

HEALTHY BIRTH, GROWTH & DEVELOPMENT knowledge integration

Leveraging Machines for Causal Modeling

MIHAI SURDEANU

October 25, 2016

80

PROBLEM STATEMENT AND DATA ANALYSIS METHODOLOGY

Goal: Build machines that help humans to model and analyze very complicated systems by reading fragmented literatures, and assembling and reasoning with models.

PROBLEM STATEMENT AND DATA ANALYSIS METHODOLOGY

Goal: Build machines that help humans to model and analyze very complicated systems by reading fragmented literatures, and assembling and reasoning with models.

- Use case 1: modeling cancer pathways, the solution to which involves reasoning over models of these systems, which have been assembled, usually from text sources, by automatic or semiautomatic methods.
- **Use case 2**: understanding biological and socio-economic factors that impact children's health, through automated reading of literature.

KEY FINDINGS AND INSIGHTS

- High-quality machine reading at scale is possible
 - Read all PubMed Open Access literature at 5 seconds/paper
 - Accuracy comparable to human cancer experts, at much higher throughput
- Use case 1: discovery of novel cancer driving mechanisms
 - Works for 11 different cancer types
 - New hypotheses for precision medicine for cancer treatment
- Use case 2: discovery of causal mechanisms in children's health
 - Reduced model development time from ~1 month to 2 days

HBGDki

HBGDki HOW WE STARTED, AND WHY

This effort is initiated by DARPA's Big Mechanism program.

"Technology to understand complicated systems"

TECHNOLOGY TO UNDERSTAND COMPLICATED SYSTEMS

- Our reach exceeds our grasp, which can be dangerous •
 - For many problems and many reasons methodology, cognitive limitations, specialization we have • component-level, not system-level understanding.
 - Understanding means cause \rightarrow effect. Big data associations are not enough. •
- If humans can't understand complicated systems, then machines must help! ٠

Slide courtesy of: Paul Cohen, DARPA

© Bill & Melinda Gates Foundation 1 6

WHICH COMPLICATED SYSTEM?

Big Mechanism is not cancer biology program, but molecular signaling in cancer, specifically Ras-driven cancers, is hugely complicated.

Slide courtesy of: NIH Ras Initiative

© Bill & Melinda Gates Foundation | 7

WHICH COMPLICATED SYSTEM?

Thousands of molecular interactions within two "hops" of Ras in Pathway Commons. Tiny fragment of a model built by computers reading the literature:

Image courtesy of: Andrey Rzhetsky, University of Chicago

- Machine reading system
- Use case 1: discovery of novel cancer drivers
- Use case 2: modeling children's health

Machine reading system

- Use case 1: discovery of novel cancer drivers
- Use case 2: modeling children's health

MACHINE LEARNING DOES NOT APPLY HERE...

 "Black box" approaches to reading using machine learning not a great choice, especially in inter-disciplinary projects!

There was no training data to match the Big Mechanism vision

HBGDki NEW PLATFORM

- So we ended up designing a new platform for machine reading: information extraction language + runtime environment
 - "Mark the object of the verb 'phosphorylate' as a protein being phosphorylated, and the subject as the controller of the interaction"
- **Expressive**: patterns over syntax or over plain text
- Captures **complex** language structures such as nested interactions
- Handles language ambiguity
- Fast runtime

HIGH-LEVEL ARCHITECTURE

© Bill & Melinda Gates Foundation | 13

HIGH-LEVEL ARCHITECTURE

80/20

WALKTHROUGH EXAMPLE FOR READING OF CAUSAL RELATIONS

FEW GRAMMAR RULES

Туре	Syntax	Surface	Total
Entities	0	15	15
Generic entities	0	2	2
Modifications	0	6	6
Mutants	0	9	9
Total entities	0	32	32
Simple events	15	11	26
Binding	30	7	37
Hydrolysis	8	2	10
Translocation	12	0	12
Positive regulation	16	4	20
Negative regulation	14	3	17
Total events	95	27	122
Total	95	59	154

HIGH-LEVEL ARCHITECTURE

COREFERENCE RESOLUTION

"Cells were transfected with *N540K, G380R, R248C, Y373C, K650M and K650E-FGFR3 mutants* and analyzed for activatory STAT1(Y701) phosphorylation 48 hours later. [...] In 293T and RCS cells, **all six FGFR3 mutants** induced activatory ERK(T202/Y204) phosphorylation (Fig. 2)."

Unspecified mutations, leading to 6 x 2 events

"LL-37 forms a complex together with the IGF-1R ... and **this binding** results in IGF-1R activation ..."

Common noun phrase refers to a specific interaction

- "We hypothesize that O₂ inhibits the Cdc25-mediated wt Ras GDP dissociation"
- "The result suggests that both the intrinsic and the Cdc25-mediated wt Ras GDP dissociation are insensitive to H2O2."

Degree of substantiation	Precision
None	43%
Partial	60%
Full	80%

Analysis courtesy of: Dayne Freitag, SRI

HIGH-LEVEL ARCHITECTURE

CONTEXTUALIZING THE EXTRACTIONS IS CRUCIAL

Species Cell type "The ability of C/L18 to inhib/t CCL11- and CCL13-induced chemotactic responses of human eosinophils has previously been reported [27]. We show here that it is able to inhibit the chemotactic responses of other CCR3 agonists (Figure 1A)."

Slide courtesy of: Clayton Morrison, UA

© Bill & Melinda Gates Foundation | 21

BIOLOGICAL CONTEXT

- Biological context serves as an index to the type of biological system: which mechanisms are (possibly) present / active.
- Context as specification of biological containers:
 - Species: human, yeast
 - Organ: liver, lung
 - **Tissue type**: lymphoid, embryo
 - Cell type: t-cell, endothelial
 - Cell line: PCS-100-020 (human, artery, endothelial)
 - Subcellular locations: endosome, nucleus

Slide courtesy of: Clayton Morrison, UA

HIGH-LEVEL ARCHITECTURE

ASSEMBLY DRIVEN BY CAUSAL PRECEDENCE

Causal precedence = Interaction A precedes B if and only if the output of A is **necessary** for the successful execution of B

WHY CAUSAL PRECEDENCE IS IMPORTANT

The SH2 domain of c-SRC *binds* VEGFR2, when VEGFR2 is *phosphorylated* at Y1057 precedes

WHY CAUSAL PRECEDENCE IS IMPORTANT

The SH2 domain of c-SRC *binds* VEGFR2, **before** VEGFR2 is *phosphorylated* at Y1057 **follows**

(skipping the technical details in the interest of time)

© Bill & Melinda Gates Foundation | 26

80

A COMPLETE MACHINE READING SYSTEM

HOW WELL DOES MACHINE READING WORK?

© Bill & Melinda Gates Foundation | 28

- Machine reading system
- Use case 1: discovery of novel cancer drivers
- Use case 2: modeling children's health

THE MUTEX ALGORITHM

We have huge amounts of data relating gene expression levels to cancers. We don't know the underlying mechanisms.

Mutex insight: If a tumor "wants" to disable a mechanism, it will mutate something upstream, but it generally won't "pay" for two mutations that do the same thing. So mutually exclusive mutations plus a good model can tell us which mechanisms the tumor disables.

Slide courtesy of: Emek Demir, OHSU

OBSERVATION OF MUTUAL EXCLUSIVITY OF GENOMIC ALTERATIONS IN CANCER

For instance, in Glioblastoma:

HBGDki WHY IT MATTERS

- Why it matters:
 - Mutations often disable "kill switches" that prevent proliferation.
 - Fixing the downstream effects of one mutation is not enough: The cell will mutate again to find another way to have the same downstream effects.
 - Therapy should disable *all* upstream mutations, or the driver itself.
- Knowing more is better.

HOW MUTEX WORKS

- Mutex does a graph search on the signaling network to find subgraphs of genes that
 - Are altered in mutually exclusive manner, and
 - Have a common downstream signaling target.
- The important issue is what data is used to search for downstream targets.

SEARCHING FOR DOWNSTREAM PROTEINS

- Previously Demir et al. were searching over Pathway Commons (PC), a manually-curated database of biochemical interactions.
- PC is estimated to cover **1%** of the literature.
- We expanded the dataset automatically by reading all PubMed Open Access papers using the system introduced before.

DATA COMPARISON

POTENTIAL CANCER DRIVING MECHANISMS DISCOVERED

 $\rm HUS1B \rightarrow CHEK1:$ "Hus1 loss results in abnormal gammaH2AX localization and increased CHK1 phosphorylation."

 $\text{PTEN} \rightarrow \text{CHEK1:}$ "PTEN also induces phosphorylation and monoubiquitination of DNA damage checkpoint kinase, Chk1"

 $\mathsf{PIK3CA} \to \mathsf{PTEN}$: "p110alpha inactivation can inhibit the impact of <code>PTEN</code> loss"

Members of a mutex group are shown in a compound node, where its label indicates sample-coverage of the alterations.

Highlighted edges do not exist in Pathway Commons (PC), and highlighted nodes cannot be detected using PC only.

Slide courtesy of: Emek Demir, OHSU

POTENTIAL CANCER DRIVING MECHANISMS FOR TCGA BREAST CANCER DATASET (BRCA)

Members of a mutex group are shown in a compound node, where its label indicates sample-coverage of the alterations.

Highlighted edges do not exist in Pathway Commons (PC), and highlighted nodes cannot be detected using PC only.

Slide courtesy of: Emek Demir, OHSU

GBM MUTEX RESULTS AFTER ADDING THE NEW DATA

Highlighted genes can be detected after adding our data

Image courtesy of: Emek Demir, OHSU

© Bill & Melinda Gates Foundation | 38

LGG MUTEX RESULTS AFTER ADDING THE NEW DATA

80

Image courtesy of: Emek Demir, OHSU

© Bill & Melinda Gates Foundation | 39

LUAD MUTEX RESULTS AFTER ADDING THE NEW DATA

80

Image courtesy of: Emek Demir, OHSU

- Machine reading system
- Use case 1: discovery of novel cancer drivers
- Use case 2: modeling children's health

HBGDki NEW USE CASE: CHILDREN'S HEALTH

- Do exactly the same, but model children's health
- Collaboration with Lyn Powell HBGDki-qPM team
- Very preliminary work: we had < 2 weeks to adapt our system
- Turns out biology was the "easy" use case
 - Many factors impact children's health, from biology to socio-economic
 - No ontologies

PROCESS

| 43

RESULTING MODEL

KEY FINDINGS AND INSIGHTS

- High-quality machine reading at scale is possible
 - Read all PubMed Open Access literature at 5 seconds/paper
 - Accuracy comparable to human cancer experts, at much higher throughput
- Use case 1: discovery of novel cancer driving mechanisms
 - Works for 11 different cancer types
 - New hypotheses for precision medicine for cancer treatment
- Use case 2: discovery of causal mechanisms in children's health
 - Reduced model development time from ~1 month to 2 days

HBGDki

- Acknowledgments:
 - Vision: **Paul Cohen**, DARPA Big Mechanism program manager
 - Actually implementing it: the University of Arizona team: Marco A.
 Valenzuela-Escarcega, Gus Hahn-Powell, Dane Bell, Thomas Hicks, Enrique Noriega-Atala, Clayton Morrison
 - Use case 1: Emek Demir, Özgün Babur Oregon Health & Science University
 - Use case 2: Lyn Powell HBGDki-qPM team