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Abstract

We present a system for the extraction
of entity and relation mentions. Our
work focused on robustness and simplic-
ity: all system components are modeled
using variants of the Perceptron algo-
rithm (Rosemblatt, 1858) and only partial
syntactic information is used for feature
extraction. Our approach has two novel
ideas. First, we define a new large-margin
Perceptron algorithm tailored for class-
unbalanced data which dynamically ad-
justs its margins, according to the gener-
alization performance of the model. Sec-
ond, we propose a novel architecture
that lets classification ambiguities flow
through the system and solves them only
at the end. The system achieves compet-
itive accuracy on the ACE English EMD
and RMD tasks.

1 Introduction

Within the Information Extraction (IE) community
the Automatic Content Extraction (ACE)1 program
provides an evaluation platform that is currently
the de factostandard for the evaluation of IE sys-
tems. The work presented in this paper falls within
the scope of two important tracks of the ACE pro-
gram: (a) Entity Mention Detection (EMD), which
evaluates the identification and classification of en-
tity mentions, and (b) Relation Mention Detection

1http://www.nist.gov/speech/tests/ace/

(RMD), which involves the extraction of binary re-
lation mentions between ACE entities. Figure 1
shows a sample text containing three ACE entity
mentions and two relation mentions. As an exam-
ple, the noun phrase headed by “building” is the
mention of an entity of typeFACILITY and sub-
typeBuilding-Grounds. The relation mentions
can be symmetrical, which hold no matter the order
of the two arguments, and asymmetrical, where the
argument order is important; e.g., between “build-
ing” and “Marines” there is a symmetrical relation
of typePHYSICAL and subtypeLocated, whereas
between “building” and “Shatra” there is an asym-
metrical relation of typePART-WHOLE and subtype
Geographical.

This paper describes a system for the extraction
of both entity and relation mentions. The methods
presented are evaluated on the English ACE corpus
but all the algorithms introduced are language inde-
pendent. The approach proposed in this paper has
several novel points:

• All learning tasks in the proposed system are
implemented using variants of the Perceptron
Algorithm (PA). Furthermore, we introduce a
new large-margin PA tailored for unbalanced
data. We show that in the RMD task the algo-
rithm performs better than both Support Vector
Machines (SVM) and regular Perceptron.

• We use a novel strategy to mitigate errors
in early stages of the system, such as en-
tity mention classification. If entity classifi-
cation ambiguities are detected (with a dedi-
cated learning-based component) we let them



FAC.Building−Grounds

PART_WHOLE.Geographical

PHYS.Located

GPE.Population−Center

While searching a headquarters building in Shatra, the Marines developed...

PER.Group

Figure 1: Sample text annotated with ACE entity and relation mentions.

trickle through the other learning components
(i.e., RMD) and solve them only at the end us-
ing an approximated-inference algorithm.

Our system obtains competitive results on the two
tasks, and especially on RMD, where both of the
above issues are fully exploited. We see these re-
sults as very encouraging considering that: (a) we
use minimal syntactic analysis of the text (i.e., only
part-of-speech (POS) tagging and chunking), (b) in
the learning components we use only linear kernels
with a simple feature space, and (c) we do not use
any form of co-reference.

The paper is organized as follows. Section 2
overviews the architecture of the full system. The
EMD system is detailed in Section 3. The am-
biguity detection system for entity classification is
introduced in Section 4. Section 5 describes the
RMD component including the novel Perceptron al-
gorithm. Section 6 contains the empirical analysis
of the system and Section 7 concludes the paper.

2 Architecture

Figure 2 shows the IE architecture proposed in this
paper. The system execution flow starts with a pre-
processing step where the text is tokenized, POS-
tagged, and basic syntactic phrases, i.e., chunks,
identified. For POS tagging we use the TnT tag-
ger (Brants, 2002)2. For syntactic analysis we use
an in-house chunker based on the YamCha toolkit3

trained on the Penn TreeBank.
The next component identifies the boundaries of

entity mentions and for each extracted mention it

2http://www.coli.uni-saarland.de/
∼thorsten/tnt

3http://chasen.org/∼taku/software/yamcha

Detection of
Class Ambiguities

RMD

EMD sequence tagger

Inference

Text

Solution
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Chunking

Figure 2: System architecture. The double lines in-
dicate ambiguities in entity or relation extraction.

detects its entity type and subtype. We model all
these operations jointly using a sequence tagger that
assigns a Begin/Inside/Outside (BIO) label to each
of tokens in the document word sequences. The
BIO labels are extended with a concatenation of
the entity type and subtype. For example, the la-
bel B-FAC-Plant indicates that the correspond-
ing token begins a mention of an entity of type
FACILITY and subtypePlant. The sequence
tagger uses the PA for sequence learning (Collins,
2002), which optimizes the choice of labeling glob-
ally at sentence level (cf. Section 3).

The next component detects ambiguities in the as-
signment of entity types and subtypes. The motiva-
tion for the inclusion of this component is that the



E1 E2 E31
E32

R2

R12

R11

Figure 3: Sentence with an ambiguous solution: en-
tity E3 and relation R1 each have two possible la-
bels.

EMD tagger performs well for the detection of men-
tion boundaries but less well in classifying them, we
present an empirical analysis of the EMD tagger in
Section 6.3. When there are ambiguities in entity
classification this module lets several entity classes
pass through to RMD. We implement this operation
as a re-classification task for each entity mention de-
tected in the previous step. Classification ambigui-
ties are detected with a beam heuristic: for every
entity we accept all classes generated with a prob-
ability within a certain threshold of the top class’s
probability. This classifier is implemented with the
averaged PA of (Freund and Shapire, 1999). We use
a separated instance of the same classifier to detect
the type of each entity mention, i.e., nominal (NOM),
pronominal (PRO), or name (NAM). We describe this
classifier in Section 4.

We model the RMD task as a classification prob-
lem. That is, every pair of entity mentions is a
possible relation. The candidate relation is a nega-
tive example if no actual relation exists between the
two entities, or a positive example otherwise. Pos-
itive examples are labeled with a relation class that
concatenates the relation type, subtype, and direc-
tion. This approach yields a very unbalanced sam-
ple space where the ratio of negative to positive ex-
amples is very large (e.g., more than 13 to 1 in the
ACE training corpus). To address this problem we
propose a new PA tailored for such class-unbalanced
scenarios. We detail this algorithm in Section 5 and
show that it outperforms both the averaged PA and
SVM in Section 6.3. The output of this component
is a beam-based set of multiple relation classes when
the corresponding relation is ambiguous.

The outcome of this process can be highly am-
biguous: each detected entity or relation mention
is possibly assigned to more than one class. Fig-
ure 3 gives an example where one entity mention

and one relation mention are assigned to two possi-
ble classes. The last system component implements
the inference mechanism necessary to identify the
best solution which will be the final system output.
The algorithm works in two steps:

1. Candidate generation. For each sentence
we generate all possible candidates. For
example, the candidates generated for the
output shown in Figure 3 are:{R11(E1,
E31), R2(E31, E2)}, {R11(E1,
E32), R2(E32, E2)}, {R12(E1,
E31), R2(E31, E2)}, {R12(E1,
E32), R2(E32, E2)}. Note that in this
step we consider only a subset of all possible
candidates since the previous beam-based
filters eliminate many entity and relation
classes unlikely to be correct. This inference
strategy falls in the category of approximated
inference rather than exact inference.

2. Candidate search. We search for the best solu-
tion by picking the sentence candidate that has
the highest confidence and is consistent with
the ACE domain constraints. As an example,
according to the definition of ACE relations, a
PHYS.Located relation may occur only be-
tween aPER entity and aFAC, LOC, or GPE
entity. We compute the confidence in a sen-
tence candidate withE entities andR relations
with the following formula:

conf(E, R) = λe

|E|∑

i=1

p(Ei) + λr

|R|∑

i=1

p(Ri)

(1)
wherep is the probability of the correspond-
ing class andλe andλr are parameters indicat-
ing the confidence assigned to the entity and re-
lation classification models (the larger the bet-
ter). Since the Perceptron does not output prob-
abilities we convert the model raw activations
to true probabilities using thesoftmax func-
tion (Bishop, 1995).

The proposed architecture is closest in spirit to
the work of (Roth and Yih, 2004). There are how-
ever two significant differences between our work
and theirs. First, ours uses approximated infer-
ence whereas (Roth and Yih, 2004) use exact in-
ference implemented with a Constraint Satisfaction



(CS) model. Their approach is guaranteed to find
the overall best solution, but it suffers the cost of
searching through a very large candidate space, i.e,
all possible candidates are generated, involving an
additional software module (the CS software). Sec-
ond, the EMD and RMD in (Roth and Yih, 2004)
are disjoint and independent, whereas in our imple-
mentation the RMD classifier uses as features the
output of the second entity classifier. We show in
Section 6.3 that feeding the EMD output to RMD is
beneficial, even if it is ambiguous.

3 Entity Mention Detection as Sequential
Tagging

We take a sequence labeling approach to learning
a model for detecting entity mentions. The objec-
tive is to learn a function from input vectors, i.e.,
the observations from labeled data, to response vari-
ables, i.e., the entity labels. Previous work on POS
tagging, shallow parsing, NP-chunking and NER
has shown that performance can be significantly im-
proved by optimizing the choice of labeling over
whole sequences of words, rather than individual
words. To model sequential labeling we adopt the
Perceptron-trained Hidden Markov Model (HMM)
originally proposed in (Collins, 2002).

3.1 Approach

HMMs define a probabilistic model for observa-
tion/label sequences. The joint model of an obser-
vation/label sequence(x,y), is defined as:

P (y,x) =
∏

i

P (yi|yi−1)P (xi|yi), (2)

whereyi is the ith label in the sequence andxi is
the ith word. A common variant involves modeling
the conditional distribution of label sequences given
observation sequences.

P (y|x) =
∏

i

P (yi|xi, yi−1). (3)

Discriminative approaches to sequence label-
ing (McCallum et al., 2000; Lafferty et al., 2001;
Collins, 2002; Altun et al., 2003) have several
advantages over generative models, such as not
requiring questionable independence assumptions,
optimizing the conditional likelihood directly and
employing richer feature representations.

The learning task can be framed as learning a dis-
criminant functionF : X × Y → IR, on a train-
ing data of observation/label sequences, whereF is
linear in a feature representationΦ defined over the
joint input/output space

F (x,y;w) = 〈w, Φ(x,y)〉. (4)

Φ is a global feature representation, mapping each
(x,y) pair to a vector of feature countsΦ(x,y) ∈
IRd, whered is the total number of features. This
vector is given by

Φ(x,y) =
d∑

i=1

|y|∑

j=1

φi(yj−1, yj ,x). (5)

Each individual featureφi extracts a morphological
or contextual feature, and the dependencies between
consecutive labels. The features used are described
in detail below in Section 3.2. Given an observation
sequencex, we make a prediction by maximizingF
over the entity sequence variable:

fw(x) = arg max
y∈Y

F (x,y;w). (6)

This involves computing the Viterbi decoding, with
respect to the parameter vectorw ∈ IRd, whose
complexity is linear in the size of the sequence. To
estimatew we use the sequence perceptron algo-
rithm (Collins, 2002). The perceptron minimizes
the error rate, without involving normalization fac-
tors and provides a very simple method. The per-
formance of Perceptron-trained HMMs has proven
competitive on a number of tasks; e.g., in shallow
parsing, where the Perceptron performance is com-
parable to that of Conditional Random Field mod-
els (Sha and Pereira, 2003), We mitigate the ten-
dency to overfit of the perceptron by regularizing
the model by means of averaging, straightforwardly
extending Collins’ method, summarized in Algo-
rithm 1.

3.2 Features

We used the following combination of
spelling/morphological and contextual features.
For each observed wordxi in the dataφ extracts the
following features:

1. Words: xi, xi−1, xi−2, xi+1, xi+2;



Algorithm 1 : Hidden Markov Average Percep-
tron
input : S = (xi, yi)

N ;w0 = ~0
for t = 1 to T do

choosexj

computeŷ = fwt
(xj)

if ŷ 6= yj then
wt+1 ← wt + Φ(xj ,yj)− Φ(xj , ŷ)

output: w = 1
T

∑
t wt

2. First sense:supersense baseline prediction for
xi, fs(xi);

3. Combined (1) and (2):xi + fs(xi);

4. Pos: posi (the POS ofxi), posi−1, posi−2,
posi+1, posi+2, posi[0], posi−1[0], posi−2[0],
posi+1[0], posi+2[0], pos commi if xi’s POS
tags is “NN” or “NNS” (common nouns), and
pos propi if xi’s POS is “NNP” or “NNPS”
(proper nouns);

5. Word shape: sh(xi), sh(xi−1), sh(xi−2),
sh(xi+1), sh(xi+2), where sh(xi) is as de-
scribed below. In additionshi = low if the
first character ofxi is lowercase,shi = cap brk

if the first character ofxi is uppercase and
xi−1 is a full stop, question or exclamation
mark, orxi is the first word of the sentence,
shi = cap nobrk otherwise;

6. Previous label: entity labelyi−1.

Words (1) are morphologically simplified using the
“morph” function provided by WordNet (Fellbaum,
1998). The first sense feature (2) is a coarse-grained
WordNet sense predicted forxi by the baseline
model described in (Ciaramita and Altun, 2006).
POS features of the formposi[0] extract the first
character from the POS label – a coarse POS tag.
Word shape features (5) are regular expression-like
transformation in which each characterc of a string
s is substituted withX if c is uppercase, if lower-
case,c is substituted withx, if c is a digit it is sub-
stituted withd and left as it is otherwise. In addition
each sequence of two or more identical charactersc
is substituted withc∗. For example, fors = “Merrill
Lynch& Co.”, sh(s) = Xx ∗ Xx ∗&Xx..

To benefit from higher-order feature representa-
tions, after extracting each observation vector, we
apply an additional feature map,Φ2. This extracts
all second order features of the formxixj ; i.e.,

Φ2(x) = (xi, xj)
(d,d)
(i,j)=(1,1). This feature map is

equivalent to adopting a polynomial kernel function
of degree 2 in a dual model. Training a dual model
with large datasets is impractical, due to the fact
that it is not possible to cache the full Kernel ma-
trix. Instead, using a second order map in the primal
model, inflates considerably the feature space (we
find more than 10 million features) but makes train-
ing still considerably faster than in the dual model4.

4 Entity Classification as Ambiguity
Detection

As mentioned in Section 2 the task of this compo-
nent is to reclassify all the entity mentions detected
by the EMD sequence tagger in order to detect ambi-
guities, i.e., entity mentions that are assigned several
classes with close probabilities.

4.1 Approach

We implement the entity classifier using the stan-
dard averaged PA. See (Freund and Shapire, 1999)
for details on this algorithm. We converted the raw
activations generated by this algorithm to true prob-
abilities (required by the beam filter) using thesoft-
max function (Bishop, 1995). An important differ-
ence between this classifier and the previous EMD
sequence tagger is that this classifier works at entity
level rather than word level. This setting allows us
to generate more complex features (cf. below).

4.2 Features

The features used for entity classification are essen-
tially n-grams of the words inside or in the immedi-
ate context of the given mention. We list these fea-
tures in Table 1. Thetoken function extracts the
word, lemma, and POS tag of a given token. The
tokens function constructs unigrams and bigrams of
words, lemmas, and POS tags for a given sequence
of tokens. We apply these two functions to the head
word of the current mention (usually the last word in
the mention), the words inside the entity, the entity
left context (the context size spans two words), and

4In practice it is sufficient to consider pairs withi ≤ j.



token(entity head word)
WordNet SuperSense of head word
BBN class of head word
tokens(entity inside words)
tokens(entity left context)
tokens(entity right context)
true if entity is known person name
true if entity is known location

Table 1: Feature types used for entity classification.

the entity right context. As additional features we
use the WordNet SuperSense of the entity head word
(extracted using the tagger described in (Ciaramita
and Altun, 2006), but without the additional second-
order feature map), the BBN class of the entity head
word (extracted using the same tagger, but trained
on the BBN Entity corpus5), and two Boolean flags
which indicate if the current mention is a known per-
son or location name.

5 Relation Mention Detection with
Perceptron with Dynamic Uneven
Margins

As previously mentioned, a key feature of the ACE
RMD problem is the large unbalance between pos-
itive and negative examples in the data. To address
this issue, we propose a new large-margin PA where
the margins are: (a) different for positive and neg-
ative examples to model the unbalance in the data,
and (b) adjusted on-line according to the generaliza-
tion performance of the model. We call this algo-
rithm the Perceptron Algorithm with Dynamic Un-
even Margins (PADUM). We detail the algorithm
next.

5.1 Approach

Our approach is based on two observations:

(a) Maximum or large margin classifiers exhibit
good generalization performance.This observation
was the motivation behind SVM (Cristianini and
Shawe-Taylor, 2000). (Krauth and Mezard, 1987)
define a new PA called Perceptron Algorithm with
Margins (PAM), which learns large-margin classi-
fiers by doing a more conservative parameter update

5BBN Pronoun Co-reference and Entity Type Corpus, Lin-
guistic Data Consortium (LDC) catalog number LDC2005T33.

in training. Unlike the PA, the PAM performs vector
updates not only when the prediction is incorrect,
but also when the model is not confident enough,
i.e., the predicted margin is smaller than a constant
τ . The PAM converges more slowly than the PA but
the classifier learned is guaranteed to have a large
margin.

(a) Treat positive and negative examples differently
in unbalanced data.(Li et al., 2002) discuss that
for data where the ratio of positive to negative ex-
amples is very small it is more important to clas-
sify correctly a positive example than a negative one.
(Li et al., 2002) introduce a variation of the PAM,
called Perceptron Algorithm with Uneven Margin
(PAUM), which uses two margin parameters, one for
positive examples,τ+1, and another for negative ex-
amples,τ−1 (typically τ+1 ≫ τ−1). Intuitively, the
PAUM gives more importance to positive than neg-
ative examples by learning classifiers with margins
that are larger for the former class of examples. They
showed that the PAUM has similar theoretical prop-
erties as the PAM, but it outperforms other on-line
algorithms and SVM for highly-unbalanced scenar-
ios.

PADUM is a direct descendant of the PAUM and
is motivated by the fact that tuning PAUM’s mar-
gin parametersτ±1 is both important and difficult.
For example, modeling the ACE RMD problem with
a one-versus-rest approach yields 33 binary classi-
fiers, each requiring a separate manual tuning pro-
cess for theτ±1 parameters. Setting incorrect val-
ues forτ±1 yields several undesired side effects. For
example, a value too small forτ+1 means that the
PAUM acquires too few positive examples and the
resulting model fails to generalize well. This is the
typical behavior of the PA, which hasτ±1 = 0. On
the other hand, setting a value too large forτ+1 sig-
nifies that the PAUM acquires two many positive ex-
amples inw, with the effect that the model is too
eager in predicting positive examples. This yields
a classifier with an excessive bias towards recall in
detriment of precision.

Instead of relying on static margin parameters, the
PADUM has a built-in tuning process for theτ±1

parameters based on the following intuition:

The margin parametersτ±1 are inversely
proportional with the classifier general-



ization performance for positive/negative
examples.

In other words, if the classifier has good perfor-
mance, the PADUM converges faster by decreas-
ing the values ofτ±1, which reduces the number of
model updates. If the classifier does not generalize,
the PADUM maintains large values forτ±1, which
means that the algorithm continues to learn until the
classifier learned has sufficiently large margins. We
quantify the generalization performance of the clas-
sifier using its classification error rate on the train-
ing set. We measure the generalization performance
separately for positive and negative examples to ad-
dress the unbalance in the data.

Figure 2 summarizes the algorithm. For simplic-
ity here we assume that each samplex is already
expanded to its feature vector. The PADUM works
on a training sampleZ and learns a set of weighted
prediction vectors(wk, ck), where the weightck in-
dicates how many iterations has thewk model sur-
vived unchanged. The(wk, ck) vectors are used
to compute the averaged prediction vectoravg, us-
ing the strategy proposed by (Freund and Shapire,
1999). Step(b) in the algorithm inner loop is es-
sentially the PAUM: the model is updated when the
predicted margin is smaller than the corresponding
τ±1 parameter. The essence of the PADUM is step
(c) where the margin parametersτ±1 are adjusted ac-
cording to the classification error rate (computed in
step(a)). In this paper we use a simple linear func-
tion to represent the dependencies betweenτ±1 and
err±1. Arguably, there are other better functions to
model the dependency betweenτ±1 anderr±1. This
remains to be investigated in future work. The algo-
rithm parameters are: the number of learning epochs
T and the initial values of the margin parameters,
Γ±1. Note that tuning of theΓ±1 values is signifi-
cantly simpler than tuning the staticτ±1 in PAUM.
For example, in all our experiments we setΓ+1 to
the largest acceptable value (1.0 because we work
with normalized vectors), and let PADUM adjust the
margin parameters on its own.

5.2 Features

The features used for the RMD task are inspired
from (Zhou et al., 2005; Claudio et al., 2006) and
are based only on lexical, morphological, and par-

Algorithm 2 : Perceptron Algorithm with Dy-
namic Uneven Margins

input : Z = (x, y) ∈ (X × {−1, +1})m,
Γ−1, Γ+1 ∈ IR+

T,w1 = ~0, c1 = 0, k = 1
for j ∈ {−1, +1} do

τj ← Γj

visitedj ← 0
incorrectj ← 0

for t = 1 to T do
for i = 1 to m do

(a) compute prediction error rate:
for j ∈ {−1, +1} do

if yi = j then
visitedj ← visitedj + 1
if yi〈wk, xi〉 ≤ 0 then

incorrectj ← incorrectj + 1

errj ←
incorrectj

visitedj

(b) update vectors:
if yi〈wk, xi〉 ≤ τyi

then
wk+1 ← wk + yixi

ck+1 ← 1
k ← k + 1

else
ck ← ck + 1

(c) update margins:
for j ∈ {−1, +1} do

τj ← errjΓj

output: avg =
∑k

i=1 ciwi

tokens(head words of relation arguments)
entities(relation arguments)
tokens(words between relation arguments)
tokens(chunks between relation arguments)
path(chunks between relation arguments)
tokens(words in the relation left context)
tokens(chunks in the relation left context)
tokens(words in the relation right context)
tokens(chunks in the relation right context)

Table 2: List of RMD features types.



tial syntactic information. We do not use full syn-
tactic analysis nor any kind of semantic information
(outside of the predicted entity classes). We list the
feature set in Table 2.

The tokens function constructs unigrams and
bigrams of words, lemmas, and POS tags for a
given sequence of tokens. We apply this function
to the two head words of the relation arguments,
the words between/before/after the two relation ar-
guments, and the head words of the chunks be-
tween/before/after the arguments. In all experiments
reported in this paper we use a context size of 1
word (or chunk) to the left/right of the correspond-
ing relation. Theentities function extracts the top
N predicted entity classes for the two arguments and
constructs all possible combinations between them.
Each entity class is expanded in this combination
with its position in the list of predicted classes, e.g.,
1 for the class with the highest confidence, 2 for the
second, etc. Thepath function constructs two se-
quences, one of chunk syntactic labels and one of
head words, for the sequence of chunks between the
two relation arguments.

6 Experiments

In this section we report our results in the official
ACE 2007 evaluation and also an analysis of the key
features of our system: the PADUM for RMD and
the strategy to handle entity classification ambigui-
ties.

6.1 Setup

We trained and tested our IE system on the ACE
2007 English data. The corpus contains 599 files
for training, 254 for EMD testing, and 155 for RMD
testing (the RMD test corpus is a subset of the EMD
test set). The corpus is annotated with 7 entity types
subdivided in 44 subtypes, and 6 relation types with
18 subtypes. Since the corpus does not have a de-
velopment section, we tuned the parameters of our
system on the training section using five-fold cross
validation.

After tuning, we configured the system with the
following parameters. We usedλe = 1.0 andλr =
0.5 in the combination stage. Intuitively, this indi-
cates that we trust the EMD system twice as much
as the RMD system. This matches our empirical re-

sults: the ACE cost-based value for EMD is roughly
twice the RMD score. With respect to the beam-
based inference, we let the top 20 entity/relation
classes enter the combination phase for each en-
tity/relation candidate. To avoid flooding the RMD
classifier with entity-based features, we used a dif-
ferent beam filter for the EMD-RMD interaction: for
each entity candidate we use the top 2 entity classes
if the second-best class is predicted with a probabil-
ity larger than the top-class probability divided by
100. Otherwise, we use only the top entity class.

We performed little tuning of the PADUM for
RMD. We setΓ+1 = 1.0, which is the largest ac-
ceptable value since we work with normalized fea-
ture vectors, andΓ−1 = 0.01.

6.2 Evaluation Results

Table 8 lists our official ACE score for the EMD
evaluation. For brevity we include only the scores
for the seven entity types. Tables 4 and 5 list the
type and subtype scores for the RMD evaluation.
The three tables indicate that our IE system has ro-
bust performance on the two tasks: we obtain a cost-
based EMD value score of 75.0 (with a value-based
F score of 83.3), and a cost-based RMD value score
of 33.1 (with a value-based F score of 54.5). We find
these results very encouraging: we obtain state-of-
the-art RMD results with a very simple architecture
and feature space, using only linear kernels in the
learning tasks, and without any form of co-reference
resolution. The next subsection shows that most of
the performance boost is caused by the PADUM, and
some by the novel system architecture.

In the EMD task we score above average on
the entities that are well represented in the data
and for which we have additional features, e.g.,
GPE and PER, and not so well for classes with
few examples in the data, e.g.,FAC and WEA.
Note that we have not used any ACE-specific
gazetteers in this paper. The same behavior repeats
for RMD: we score badly for relations with very
few examples, e.g.,PART-WHOLE.Artifact
or ORG-AFF.Founder, and score well for
relations that are unambiguous and/or have
more examples, e.g.,PER-SOC.Family or
ORG-AFF.Employment. These observations
highlight the fact that even an algorithm tailored for
sparse data such as the PADUM has its limitations.



Count Cost (%)
Ent Detection Rec Detection Rec Value Value-based
Tot FA Miss Err FA Miss Err (%) Pre Rec F

FAC 719 67 244 212 8.6 25.9 14.4 51.1 72.2 59.7 65.3
GPE 3198 165 385 775 3.6 10.1 10.8 75.6 84.7 79.2 81.8
LOC 422 50 135 152 10.2 22.9 17.3 49.6 68.5 59.8 63.8
ORG 2677 157 475 1119 5.8 16.4 14.1 63.6 77.7 69.5 73.4
PER 10359 560 804 2285 6.9 8.2 1.7 83.2 91.3 90.1 90.7
VEH 413 16 118 95 3.2 25.7 4.7 66.4 89.8 69.6 78.4
WEA 335 21 124 136 10.6 42.0 2.6 44.8 80.8 55.4 65.7
total 18123 1036 2285 4774 5.8 11.8 7.4 75.0 85.9 80.8 83.3

Table 3: EMD scores in the ACE evaluation for the seven entity types.

Count Cost (%)
Ent Detection Rec Detection Rec Value Value-based
Tot FA Miss Err FA Miss Err (%) Pre Rec F

ART 261 38 157 84 9.1 63.9 2.5 24.5 74.2 33.6 46.2
GEN-AFF 235 28 120 92 9.1 51.5 5.0 34.5 75.6 43.6 55.3
ORG-AFF 503 71 216 237 9.6 45.4 4.0 41.0 78.9 50.6 61.6
PART-WHOLE 354 57 182 110 12.1 48.9 2.2 36.8 77.4 48.9 59.9
PER-SOC 213 24 90 116 5.6 38.5 2.4 53.5 88.0 59.1 70.7
PHYS 428 76 298 113 8.7 69.1 6.2 16.0 62.3 24.7 35.4
total 1994 294 1063 752 9.4 53.5 4.0 33.1 76.1 42.5 54.5

Table 4: RMD scores in the ACE evaluation for the six relation types.

Count Cost (%)
Ent Detection Rec Detection Rec Value Value-based
Tot FA Miss Err FA Miss Err (%) Pre Rec F

Artifact 14 0 13 1 0.0 92.0 2.4 5.6 70.0 5.6 10.4
Business 63 4 39 24 2.2 63.8 3.4 30.7 85.6 32.8 47.5
Citizen... 171 23 83 73 10.5 49.6 5.7 34.1 73.3 44.6 55.5
Employment 344 61 113 189 12.1 34.8 4.0 49.1 79.1 61.2 69.0
Family 118 19 32 79 8.6 20.9 0.4 70.1 89.7 78.7 83.8
Founder 6 0 5 1 0.0 88.8 3.4 7.8 70.0 7.8 14.1
Geographical 223 33 102 71 10.4 42.0 1.9 45.7 82.1 56.1 66.7
Investor... 8 0 5 3 0.0 57.1 2.9 40.0 93.3 40.0 56.0
Lasting-Personal 32 1 19 13 1.9 50.6 7.8 39.8 81.2 41.6 55.0
Located 382 72 263 102 9.2 68.3 6.6 15.9 61.4 25.1 35.6
Membership 96 8 55 33 6.0 61.3 4.2 28.5 77.2 34.5 47.7
Near 46 4 35 11 4.9 75.2 3.2 16.7 72.8 21.6 33.3
Org-Location 64 5 37 19 5.9 55.6 3.2 35.3 82.0 41.2 54.8
Ownership 15 2 13 2 5.0 87.5 0.0 7.5 71.4 12.5 21.3
Sports-Affiliation 17 0 15 2 0.0 88.4 3.5 8.1 70.0 8.1 14.6
Student-Alum 17 0 10 7 0.0 60.0 7.5 32.5 81.2 32.5 46.4
Subsidiary 117 24 67 38 16.1 58.8 2.9 22.2 66.8 38.3 48.7
User-Owner... 261 38 157 84 9.1 63.9 2.5 24.5 74.2 33.6 46.2
total 1994 294 1063 752 9.4 53.5 4.0 33.1 76.1 42.5 54.5

Table 5: RMD scores in the ACE evaluation for the 18 relation subtypes.



We believe that in order to achieve truly operational
performance one has to look at semi-supervised
methods and/or knowledge-rich systems.

With respect to the quantitative performance,
all EMD system processes were performed on a
2.4GHz AMD Opteron machine. We applied the
second-order feature map without modifications to
the original tagger implementation, which is not
conceived for handling efficiently tens of millions
of features. While the second-order tagger is slow,
it could be substantially optimized to achieve bet-
ter performance. Currently, the second-order tagger
takes about 1 hour/epoch to train. The trained sys-
tem in prediction labels about 50 words/second. The
RMD system takes 47 seconds/epoch to train on a
Pentium IV computer 3.2GHz and classifies 23,000
words/second (assuming entity mentions are already
labeled).

6.3 Analysis

In this subsection we compare: (a) the behavior of
the PADUM for RMD against other known learn-
ing algorithms, and (b) our architecture with other
typical IE systems. All the experiments reported in
this subsection were performed on the training cor-
pus using five-fold cross validation.

6.3.1 Analysis of the PADUM for RMD

For a better understanding of PADUM’s behavior
we compare the PADUM with the regular averaged
PA and SVM for the problem of RMD. Note that the
averaged PA is a special case of the PADUM, where
Γ±1 = 0. We use libsvm6 for the implementation of
the SVM classifier. We configured libsvm with the
following parameters:C = 1.0; gamma = 1/k,
wherek = 18 is the number of categories (i.e., re-
lation subtypes) in the RMD data. We built several
other SVM models with various values for the clas-
sification penalty costs but saw no improvement in
the overall performance. All three algorithms use
the same features. To isolate the relation extraction
component we performed this experiment using gold
entity keys and scored only the relation classification
task using standard precision/recall/F1 measures.

Table 6 summarizes the results of this experiment.
For the Perceptron algorithms we report results af-

6http://www.csie.ntu.edu.tw/∼cjlin/
libsvm/

Precision Recall F1

PADUM, 1 epoch 65.71% 45.48% 53.75
PADUM, 5 epochs 62.96% 56.31% 59.44
Avg PA, 1 epoch 67.94% 40.28% 50.58
Avg PA, 5 epochs 66.64% 52.19% 58.53
SVM 50.62% 63.72% 56.42

Table 6: Comparison of PA, PADUM, and SVM for
RMD using gold entity mentions.

Precision Recall F1

Recognition only 92.39% 87.60% 89.93
Recognition + Classification 77.81% 74.41% 76.07

Table 7: Analysis of EMD scores.

ter one and after five epochs. The table shows that
the PADUM performs the best out of the three al-
gorithms. After 5 epochs, the PADUM has a F1

score approximately 3 points higher than SVM and
1 point higher than the PA. Moreover, the PADUM
is the most balanced of the three algorithms. As
expected, the PA is precision-biased (with preci-
sion 14% higher than recall), whereas SVM (in its
default configuration) is recall-biased (with recall
13% higher than precision). On the other hand,
the PADUM after 5 epochs has precision and recall
scores that are only within 5% of each other. This
is proof that the dynamic margin adjustment built in
the PADUM is beneficial.

Another advantage of PADUM is its learning
speed. For the RMD problem PADUM takes 47
seconds/epoch and usually 5 epochs are sufficient to
converge. On the other hand SVM (using libsvm’s
C-SVC SVM type) takes over 15 hours to learn a
RMD model under the same conditions.

6.3.2 Analysis of the Proposed Architecture

In this section we analyze our proposed IE archi-
tecture, where the ambiguities in entity and relation
classification are left in the system and solved only
at the end.

Table 7 and Figure 4 justify the need for ambigu-
ity detection in entity classification. Table 7 shows
that the F1 scores of the EMD system when perform-
ing only recognition are significantly higher (ap-
proximately 14 F1 points) than the score of recog-
nition and classification. This indicates that the ma-
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Figure 4: Accuracy of an oracle entity classification
system that selects the best class out of the topN .

jor failure point for EMD is mention classification.
Furthermore, Figure 4, which shows the accuracy of
an oracle entity classification system that selects the
best class out of the topN classes output by our en-
tity re-classifier, indicates that the classification ac-
curacy is significantly improved when considering
the top two or three classes. For example, the ora-
cle has an accuracy of approximately 89% with the
top 3 classes (out of 45 categories: 44 subtypes plus
one for theNIL category). This analysis indicates
that, although mention classification is the weakest
point in EMD, working with the top two or three
categories improves significantly the quality of the
EMD output. This motivated us in designing the IE
system shown in Figure 2.

Table 8 compares our architecture with two other
popular IE architectures: (a) the pipeline approach,
where the EMD and RMD components are sequen-
tially linked and only the top output is propagated
between the layers, hence no inference is needed,
and (b) the approach of (Roth and Yih, 2004), which
combines the EMD and RMD outputs using an in-
ference approach close to ours, but the two compo-
nents are independently trained without any commu-
nication between them. We called our implementa-
tion of the latter “pseudo Roth & Yih” because we
used the approximated inference described in Sec-
tion 2 rather than the exact inference introduced in
the original article. Table 8 shows that it is impor-
tant to feed entity information to RMD: the “pseudo
Roth & Yih” system, which trains the RMD com-
ponent without entity class information, has a cost-

based value score that is 3.7% lower than our sys-
tem. On the other hand, the difference between our
architecture and the pipeline approach is not that
large: our cost-based value score is 0.1% larger for
EMD and 0.2% larger for RMD. Nevertheless, our
architecture has the additional advantage that all the
solutions generated are consistent with the ACE do-
main constraints, which can not be guaranteed for
the pipeline approach.

7 Conclusions

This paper describes a system for the extraction of
mentions of entities and binary relations. The main
focus behind the development of this system was ro-
bustness and simplicity: the system is completely
machine learning-based and all learning tasks are
developed using variants of the Perceptron algo-
rithm. Furthermore, we use only syntactic infor-
mation that can be efficiently extracted from text
(newswire, blogs, etc): POS tagging and partial syn-
tactic analysis (i.e., chunking).

The paper’s contributions include several novel
ideas. First, we define a new large-margin Per-
ceptron Algorithm with Dynamic Uneven Margins
(PADUM), which is capable of dynamically ad-
justing its margins in relation to the generalization
performance of the learned model. Furthermore,
the PADUM manages different margins for posi-
tive and negative examples to address the sample
unbalance that is common in many learning prob-
lems. We show that for the task of relation extrac-
tion the PADUM performs significantly better than
SVM even though its training time is two orders of
magnitude smaller than SVM’s.

Second, we propose a novel strategy to mitigate
the propagation of errors made in early processing
stages; e.g., entity classification. If ambiguities are
detected, i.e, the corresponding component is not
confident enough in its output, we let several hy-
potheses flow through the system. All ambiguities
are solved only at the end using a simple approxi-
mated inference approach. We provided empirical
evidence that our approach is better than other tra-
ditional IE architectures. Furthermore, our system
guarantees a solution that is consistent with the do-
main constraints.

We evaluated our system within the ACE 2007



Count Cost (%)
Ent Detection Rec Detection Rec Value Value-based

EMD Tot FA Miss Err FA Miss Err (%) Pre Rec F
This paper 54824 2907 5805 16394 5.2 9.0 6.7 79.1 87.6 84.3 85.9
Pipeline 54824 2907 5805 16406 5.2 9.0 6.7 79.0 87.6 84.2 85.9
Pseudo Roth & Yih 54824 2907 5805 16400 5.2 9.0 6.7 79.1 87.6 84.3 85.9

Count Cost (%)
Ent Detection Rec Detection Rec Value Value-based

RMD Tot FA Miss Err FA Miss Err (%) Pre Rec F
This paper 8738 1661 4289 3681 12.1 48.7 4.4 34.8 74.0 46.9 57.4
Pipeline 8738 1933 4077 3868 14.0 46.6 4.8 34.6 72.1 48.6 58.1
Pseudo Roth & Yih 8738 1310 4865 3244 9.3 55.9 3.7 31.1 75.6 40.4 52.7

Table 8: Comparison of our architecture with the pipeline approach and (Roth and Yih, 2004).

evaluation. We obtain competitive results on both
the EMD and RMD tasks, which is very encouraging
considering the simplicity of the proposed approach.
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