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Abstract

We present a system for the extraction
of entity and relation mentions. Our
work focused on robustness and simplic-
ity: all system components are modeled
using variants of the Perceptron algo-
rithm (Rosemblatt, 1858) and only partial
syntactic information is used for feature
extraction. Our approach has two novel
ideas. First, we define a new large-margin
Perceptron algorithm tailored for class-
unbalanced data which dynamically ad-
justs its margins, according to the gener-
alization performance of the model. Sec-
ond, we propose a novel architecture
that lets classification ambiguities flow
through the system and solves them only
at the end. The system achieves compet-
itive accuracy on the ACE English EMD
and RMD tasks.

1 Introduction

Within the Information Extraction (IE) community
the Automatic Content Extraction (ACEprogram
provides an evaluation platform that is currently
the de factostandard for the evaluation of IE sys-
tems. The work presented in this paper falls within
the scope of two important tracks of the ACE pro-
gram: (a) Entity Mention Detection (EMD), which
evaluates the identification and classification of en-
tity mentions, and (b) Relation Mention Detection
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(RMD), which involves the extraction of binary re-
lation mentions between ACE entities. Figure 1
shows a sample text containing three ACE entity
mentions and two relation mentions. As an exam-
ple, the noun phrase headed by “building” is the
mention of an entity of typd-ACl LI TY and sub-
typeBui | di ng- Gr ounds. The relation mentions
can be symmetrical, which hold no matter the order
of the two arguments, and asymmetrical, where the
argument order is important; e.g., between “build-
ing” and “Marines” there is a symmetrical relation
of typePHYSI CAL and subtypé&ocat ed, whereas
between “building” and “Shatra” there is an asym-
metrical relation of typ&ART- WHOLE and subtype
Ceogr aphi cal .

This paper describes a system for the extraction
of both entity and relation mentions. The methods
presented are evaluated on the English ACE corpus
but all the algorithms introduced are language inde-
pendent. The approach proposed in this paper has
several novel points:

e All learning tasks in the proposed system are
implemented using variants of the Perceptron
Algorithm (PA). Furthermore, we introduce a
new large-margin PA tailored for unbalanced
data. We show that in the RMD task the algo-
rithm performs better than both Support Vector
Machines (SVM) and regular Perceptron.

e We use a novel strategy to mitigate errors
in early stages of the system, such as en-
tity mention classification. If entity classifi-
cation ambiguities are detected (with a dedi-
cated learning-based component) we let them



PART_WHOLE.Geographical

PHYS.Located

vl v oy

While searching a headquarters building in Shatra, the Marines developed...
FAC.Building—Grounds PER.Group
GPE.Population-Center

Figure 1: Sample text annotated with ACE entity and relation mentions.

trickle through the other learning components Text

(i.e., RMD) and solve them only at the end us- %

ing an approximated-inference algorithm. Preprocessing

POS tggging

Our system obtains competitive results on the two chunkng
tasks, and especially on RMD, where both of the %
above issues are fully exploited. We see these re- [EMD sequence tagger }
sults as very encouraging considering that: (a) we %
use minimal syntactic analysis of the text (i.e., only
part-of-speech (POS) tagging and chunking), (b) in Class Ambiguities

the learning components we use only linear kernels
with a simple feature space, and (c) we do not use
any form of co-reference. m
The paper is organized as follows. Section 2 i
overviews the architecture of the full system. The
EMD system is detailed in Section 3. The am- %
biguity detection system for entity classification is
introduced in Section 4. Section 5 describes thE' ) , , -
RMD component including the novel Perceptron al- 'gure 2: S_yst_em a_lrch|te_cture. Th_e double I|_nes n
gorithm. Section 6 contains the empirical analysiglcate ambiguities in entity or relation extraction.
of the system and Section 7 concludes the paper.

Solution

detects its entity type and subtype. We model all
these operations jointly using a sequence tagger that
Figure 2 shows the IE architecture proposed in thigssigns a Begin/Inside/Outside (BIO) label to each
paper. The system execution flow starts with a predf tokens in the document word sequences. The
processing step where the text is tokenized, POSIO labels are extended with a concatenation of
tagged, and basic syntactic phrases, i.e., chunkbge entity type and subtype. For example, the la-
identified. For POS tagging we use the TnT tagbel B- FAC- Pl ant indicates that the correspond-
ger (Brants, 2002) For syntactic analysis we useing token begins a mention of an entity of type
an in-house chunker based on the YamCha toblkiFACI LI TY and subtypePl ant. The sequence
trained on the Penn TreeBank. tagger uses the PA for sequence learning (Collins,
The next component identifies the boundaries ¢2002), which optimizes the choice of labeling glob-
entity mentions and for each extracted mention illy at sentence level (cf. Section 3).
T . . The next component detects ambiguities in the as-
http://ww. coli.uni-saarland. de/ . . .
~t hor st en/ t nt signment of entity types and subtypes. The motiva-
*htt p: // chasen. or g/ ~t aku/ sof t war e/ yanctha tion for the inclusion of this component is that the

2 Architecture
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and one relation mention are assigned to two possi-
ble classes. The last system component implements

the inference mechanism necessary to identify the

best solution which will be the final system output.

E1l E2 E31

E32

Figure 3: Sentence with an ambiguous solution: en-1-
tity E3 and relation R1 each have two possible la-
bels.

EMD tagger performs well for the detection of men-
tion boundaries but less well in classifying them, we
present an empirical analysis of the EMD tagger in
Section 6.3. When there are ambiguities in entity
classification this module lets several entity classes
pass through to RMD. We implement this operation
as a re-classification task for each entity mention de-
tected in the previous step. Classification ambigui-
ties are detected with a beam heuristic: for every
entity we accept all classes generated with a prob-
ability within a certain threshold of the top class’s 2.
probability. This classifier is implemented with the
averaged PA of (Freund and Shapire, 1999). We use
a separated instance of the same classifier to detect
the type of each entity mention, i.e., nominsOM),
pronominal PRO), or name NAM). We describe this
classifier in Section 4.

We model the RMD task as a classification prob-
lem. That is, every pair of entity mentions is a
possible relation. The candidate relation is a nega-
tive example if no actual relation exists between the
two entities, or a positive example otherwise. Pos-
itive examples are labeled with a relation class that
concatenates the relation type, subtype, and direc-
tion. This approach yields a very unbalanced sam-
ple space where the ratio of negative to positive ex-
amples is very large (e.g., more than 13 to 1 in the
ACE training corpus). To address this problem we
propose a new PA tailored for such class-unbalanced
scenarios. We detail this algorithm in Section 5 and
show that it outperforms both the averaged PA and
SVM in Section 6.3. The output of this component

The algorithm works in two steps:

Candidate generatian For each sentence
we generate all possible candidates. For
example, the candidates generated for the
output shown in Figure 3 are{R11( E1,

E31), R2(E31, E2)}, {R11( E1,
E32), R2(E32, E2)}, {R12( E1,
E31), R2(E31, E2)}, {R12( E1,
E32), R2(E32, E2)}. Note that in this

step we consider only a subset of all possible
candidates since the previous beam-based
filters eliminate many entity and relation
classes unlikely to be correct. This inference
strategy falls in the category of approximated
inference rather than exact inference.

Candidate searchWe search for the best solu-
tion by picking the sentence candidate that has
the highest confidence and is consistent with
the ACE domain constraints. As an example,
according to the definition of ACE relations, a
PHYS. Locat ed relation may occur only be-
tween aPER entity and aFAC, LOC, or GPE
entity. We compute the confidence in a sen-
tence candidate witk entities andR relations
with the following formula:

E| R|
conf(E,R) = A¢ ZP(Ez) + Ar ZP(Ri)

=1 =1

1)
wherep is the probability of the correspond-
ing class and\. and )\, are parameters indicat-
ing the confidence assigned to the entity and re-
lation classification models (the larger the bet-
ter). Since the Perceptron does not output prob-
abilities we convert the model raw activations
to true probabilities using theoftmaxfunc-
tion (Bishop, 1995).

is a beam-based set of multiple relation classes whenThe proposed architecture is closest in spirit to

the corresponding relation is ambiguous.

the work of (Roth and Yih, 2004). There are how-

The outcome of this process can be highly amever two significant differences between our work

biguous: each detected entity or relation mentioand theirs.

First, ours uses approximated infer-

is possibly assigned to more than one class. Fignce whereas (Roth and Yih, 2004) use exact in-
ure 3 gives an example where one entity mentioference implemented with a Constraint Satisfaction



(CS) model. Their approach is guaranteed to find The learning task can be framed as learning a dis-
the overall best solution, but it suffers the cost otriminant functionf’ : X x ) — IR, on a train-
searching through a very large candidate space, iiag data of observation/label sequences, wheéiis

all possible candidates are generated, involving dmear in a feature representatidndefined over the
additional software module (the CS software). Segeint input/output space

ond, the EMD and RMD in (Roth and Yih, 2004)

are disjoint and independent, whereas in our imple- F(x,y;w) = (w, 2(x,y)). (4)

mentation the RMD classifier uses as features th(g. . .
. e . ® is a global feature representation, mapping each
output of the second entity classifier. We show i )

x,y) pair to a vector of feature counf(x,y) €

Sectlo_n_6.3 that fe_e(_jmg th? EMD output to RMD ISRd, whered is the total number of features. This
beneficial, even if it is ambiguous.

vector is given by
3 Entity Mention Detection as Sequential 4 Iyl

Tagging (x,y) =Y dilyj-1,¥5,%). (5)
We take a sequence labeling approach to learning =1j=1

a model for detecting entity mentions. The objeCgych individual feature; extracts a morphological
tive is to learn a function from input vectors, i.e.,or contextual feature, and the dependencies between
the observations from labeled data, to response vagansecutive labels. The features used are described
ables, i.e., the entity labels. Previous work on POR, getail below in Section 3.2. Given an observation

tagging, shallow parsing, NP-chunking and NERseq ence, we make a prediction by maximizing
has shown that performance can be significantly ims, or the entity sequence variable:

proved by optimizing the choice of labeling over
whole sequences of words, rather than individual fw(x) = argmax F'(x,y; w). (6)
words. To model sequential labeling we adopt the yey

Perceptron-trained Hidden Markov Model (HMM) This involves computing the Viterbi decoding, with
originally proposed in (Collins, 2002). respect to the parameter vector € IRY, whose
complexity is linear in the size of the sequence. To

_ o estimatew we use the sequence perceptron algo-
HMMs define a probabilistic model for observa-iinm (Collins, 2002). The perceptron minimizes

tion/label sequences. The joint model of an obsefne error rate, without involving normalization fac-

3.1 Approach

vation/label sequende, y), is defined as: tors and provides a very simple method. The per-
P(y,x) = HP(yilyiq)P(ﬂJilyi), ) forman(_:(_a of Perceptron-trained HMMS h'as proven
p competitive on a number of tasks; e.g., in shallow

. _ ~ parsing, where the Perceptron performance is com-
wherey; is the " label in the sequence and is parable to that of Conditional Random Field mod-
the " word. A common variant involves modeling els (Sha and Pereira, 2003), We mitigate the ten-
the conditional distribution of label sequences giveﬂency to overfit of the perceptron by regularizing

observation sequences. the model by means of averaging, straightforwardly
P(y|x) = HP(yilwi,yiq). 3) ﬁ;(t:i:\(ilng Collins’ method, summarized in Algo-

Discriminative approaches to sequence labeB.2 Features
ing (McCallum et al., 2000; Lafferty et al., 2001;\ys sed the following combination  of

Collins, 2002; Altun et al., 2003) have severalyqjing/morphological and contextual features.

adva_n_tages over generanve models, such as N&r each observed worg in the datap extracts the
requiring questionable independence assumptloq%ﬂowing features:

optimizing the conditional likelihood directly and
employing richer feature representations. 1. Words: z;, x;—1, Ti—2, Ti+1, Tit12,



Algorithm 1: Hidden Markov Average Percep- To benefit from higher-order feature representa-

tron tions, after extracting each observation vector, we
input : S = (x;, ;) ; w0 = 0 apply an additional feature mag@?. This extracts
fort = 1to T do all second order features of the formz;; i.e.,
choosex; P2 (x) = (:ci,xj)gjﬁ):(ljl). This feature map is
computey = fw, (x;) equivalent to adopting a polynomial kernel function
if y # y; then of degree 2 in a dual model. Training a dual model
| Wi — we + O(x5,y5) — ©(x5,9) with large datasets is impractical, due to the fact

that it is not possible to cache the full Kernel ma-
trix. Instead, using a second order map in the primal
model, inflates considerably the feature space (we

2. First sense:supersense baseline prediction foFind more than 10 million features) but makes train-
ing still considerably faster than in the dual mddel

output: w = £ 3>, wy

Ty fS(:Ui);

3. Combined (1) and (2):2; -+ fs(z:); 4 Entity _Classification as Ambiguity
Detection

4. Pos: pos; (the POS Ofxi), poSi—1, POS;—2, A i din Secti 5 the task of thi
POSi41, POSi|2, posi[O], posifl[O}, pOSifz[O], S mentioned In Section e lasKk o IS compo-

posi+1[0], posi.[0], pos.comm; if z;'s POS nent is to reclassify all the enFity mentions detecteq

tags is “NN” or “NNS” (common nouns), and by_the E_MD sequence t_agger in orderto_detect ambi-

pos_prop; if z;'s POS is “NNP” or “NNPS” guities, i.e., entity mentlon.s.t.hat are assigned several

(proper nouns): classes with close probabilities.

5. Word shape: sh(z;), sh(x;—1), sh(z;—2), 4.1 Approach
sh(z;y1), sh(zire), Wheresh(z;) is as de- We implement the entity classifier using the stan-
scribed below. In additiorsh; = low if the dard averaged PA. See (Freund and Shapire, 1999)
first character of; is lowercasesh; = cap_brk  for details on this algorithm. We converted the raw
if the first character ofr; is uppercase and activations generated by this algorithm to true prob-
x;_1 is a full stop, question or exclamationabilities (required by the beam filter) using theft-
mark, orzx; is the first word of the sentence, maxfunction (Bishop, 1995). An important differ-

sh; = cap_nobrk otherwise; ence between this classifier and the previous EMD
_ _ sequence tagger is that this classifier works at entity
6. Previous label: entity labely; ;. level rather than word level. This setting allows us

Words (1) are morphologically simplified using theto generate more complex features (cf. below).

“morph” function provided by WordNet (Fellbaum, 4 2 Features
1998). The first sense feature (2) is a coarse-grain

WordNet sense predicted far; by the baseline q%e features used for entity classification are essen-

model described in (Ciaramita and Altun, 2006).tlally n-grams of the_ words ms_,lde orin _the Immedi-
ate context of the given mention. We list these fea-

POS features of the formosi[0] extract the first tures in Table 1. Theoken function extracts the

h f he P label — P . .
character from the POS label - a coarse QS t.a\%/ord, lemma, and POS tag of a given token. The
Word shape features (5) are regular expression-like

L . : tokens function constructs unigrams and bigrams of
transformation in which each characteof a string )
. . . . . words, lemmas, and POS tags for a given sequence
s is substituted withX if ¢ is uppercase, if lower- .
) . T o of tokens. We apply these two functions to the head
case is substituted withr, if c is a digit it is sub- word of the current mention (usually the last word in
stituted withd and left as it is otherwise. In addition y

. : the mention), the words inside the entity, the entity
each sequence of two or more identical character .
) : . i . eft context (the context size spans two words), and
is substituted withex. For example, fos = “Merrill

Lynch& Co.”, sh(s) = Xx % Xx * &Xx.. “In practice it is sufficient to consider pairs withc ;.



token(entity head wordl in training. Unlike the PA, the PAM performs vector

WordNet SuperSense of head word updates not only when the prediction is incorrect,

BBN class of head word but also when the model is not confident enough,

tokens(entity inside wordg i.e., the predicted margin is smaller than a constant
tokens(entity left context 7. The PAM converges more slowly than the PA but

tokens(entity right context the classifier learned is guaranteed to have a large
true if entity is known person name margin.

true if entity is known location

(a) Treat positive and negative examples differently
] ... inunbalanced data.(Li et al., 2002) discuss that
Table 1: Feature types used for entity classmcatlo%r data where the ratio of positive to negative ex-
amples is very small it is more important to clas-
the entity right context. As additional features wesify correctly a positive example than a negative one.
use the WordNet SuperSense of the entity head wo(Hi et al., 2002) introduce a variation of the PAM,
(extracted using the tagger described in (Ciaramitealled Perceptron Algorithm with Uneven Margin
and Altun, 2006), but without the additional second{PAUM), which uses two margin parameters, one for
order feature map), the BBN class of the entity heapositive examples;, 1, and another for negative ex-
word (extracted using the same tagger, but traineamples,_; (typically 7.1 > 7_1). Intuitively, the
on the BBN Entity corpud, and two Boolean flags PAUM gives more importance to positive than neg-
which indicate if the current mention is a known perative examples by learning classifiers with margins

son or location name. that are larger for the former class of examples. They
) _ _ _ showed that the PAUM has similar theoretical prop-
5 Relation Mention Detection with erties as the PAM, but it outperforms other on-line
Perceptron with Dynamic Uneven algorithms and SVM for highly-unbalanced scenar-
Margins ios.

As previously mentioned, a key feature of the ACE PAPUM is a direct descendant of the PAUM and
RMD problem is the large unbalance between podS Motivated by the fact that tuning PAUM's mar-
itive and negative examples in the data. To addre§i" Parametersy, is both important and difficult.
this issue, we propose a new large-margin PA whefe®" €xa@mple, modeling the ACE RMD problem with
the margins are: (a) different for positive and neg ONe-versus-rest approach yields 33 binary classi-
ative examples to model the unbalance in the dat4ers, €ach requiring a separate manual tuning pro-
and (b) adjusted on-line according to the generaliz£€SS for ther.; parameters. Setting incorrect val-
tion performance of the model. We call this algo-ues forry, yields several undesired side effects. For

rithm the Perceptron Algorithm with Dynamic Un- €X@mple, a value too small for.; means that the
even Margins (PADUM). We detail the algorithm PAUM acquires too few positive examples and the
resulting model fails to generalize well. This is the

next.
typical behavior of the PA, which has.; = 0. On
5.1 Approach the other hand, setting a value too largefof sig-

amples inw, with the effect that the model is too

eager in predicting positive examples. This yields

a classifier with an excessive bias towards recall in
etriment of precision.

(@) Maximum or large margin classifiers exhibit
good generalization performanc&his observation
was the motivation behind SVM (Cristianini and
Shgwe-Taonr, 2000). (Krauth and Meza_rd, 1987 Instead of relying on static margin parameters, the
defln(_e a new PA ca_lled Perceptron Algor_lthm W|t_ ADUM has a built-in tuning process for the ;
Margins (PAM), which learns large-margin classi-

. . ) Parameters based on the following intuition:
fiers by doing a more conservative parameter update

SBBN Pronoun Co-reference and Entity Type Corpus, Lin-  11€ Margin parametersy; are inversely
guistic Data Consortium (LDC) catalog number LDC2005T33. proportional with the classifier general-



ization performance for positive/negative

les.
examples Algorithm 2: Perceptron Algorithm with Dy-

In other words, if the classifier has good perfor- N@mic Uneven Margins

mance, the PADUM converges faster by decreas- input : Z = (x,y) € (X x {-1,+1})™,

ing the values of-.1, which reduces the number of I, e Rt

model updates. If the classifier does not generalize, T,wi=0,c1 =0,k=1
the PADUM maintains large values fot 1, which for j € {-1,+1} do

means that the algorithm continues to learn until the T Lj

classifier learned has sufficiently large margins. We | Visited; < 0

quantify the generalization performance of the clas- L NCOec « 0

sifier using its classification error rate on the train- for ¢ = 1to 7' do
ing set. We measure the generalization performance | for i =1to m do

separately for positive and negative examples to ad- (a) cpmpute prediction error rate:
dress the unbalance in the data. forj & {~1,+1} do
Figure 2 summarizes the algorithm. For simplic- if y; = j then

visited; « visited; + 1

ity here we assume that each samplés already if (W, x:) < 0 then
Yi\Wg, X)) =

expandc_eo! to its feature vector. The PADUM works | incorrect « incorrect + 1
on a training sample and learns a set of weighted eormect -

prediction vectorgwy, ci), where the weight;, in- eIty — ~isited,

dicates how many iterations has twg model sur-
vived unchanged. Théwy,c,) vectors are used

6) update vectors:
f yi(Wk7Xi> < Ty; then

—~

to compute the averaged prediction veawg, us- Whi1 — Wi 4 4iX;
ing the strategy proposed by (Freund and Shapire, Chp1 — 1

1999). Step(b) in the algorithm inner loop is es- | ke—k4+1
sentially the PAUM: the model is updated when the else

predicted margin is smaller than the corresponding | cp—cp+1

741 parameter. The essence of the PADUM is step (c) update margins:
(c)where the margin parameters; are adjusted ac- for j € {—1,+1} do
cording to the classification error rate (computed in | 75« err;Ty

step(a)). In this paper we use a simple linear func- - .
tion to represent the dependencies betwegnand output: avg = > iy W,

erry1. Arguably, there are other better functions to
model the dependency between anderri;. This
remains to be investigated in future work. The algo-
rithm parameters are: the number of learning epochs
T and the initial values of the margin parameters,
I'+;. Note that tuning of thd'L; values is signifi-
cantly simpler than tuning the statig.; in PAUM.

For example, in all our experiments we gét; to

the largest acceptable value (1.0 because we work
with normalized vectors), and let PADUM adjust the
margin parameters on its own.

tokens(head words of relation arguments
entities(relation argumenis

tokens(words between relation arguments
tokens(chunks between relation arguments
path(chunks between relation arguments
tokens(words in the relation left context
tokens(chunks in the relation left context
tokens(words in the relation right context
52 Features tokens(chunks in the relation right context

The features used for the RMD task are inspired
from (Zhou et al., 2005; Claudio et al., 2006) and
are based only on lexical, morphological, and par-

Table 2: List of RMD features types.



tial syntactic information. We do not use full syn-sults: the ACE cost-based value for EMD is roughly
tactic analysis nor any kind of semantic informatiortwice the RMD score. With respect to the beam-
(outside of the predicted entity classes). We list thbased inference, we let the top 20 entity/relation
feature set in Table 2. classes enter the combination phase for each en-
The tokens function constructs unigrams andtity/relation candidate. To avoid flooding the RMD
bigrams of words, lemmas, and POS tags for elassifier with entity-based features, we used a dif-
given sequence of tokens. We apply this functiofierent beam filter for the EMD-RMD interaction: for
to the two head words of the relation argumentsgach entity candidate we use the top 2 entity classes
the words between/before/after the two relation atf the second-best class is predicted with a probabil-
guments, and the head words of the chunks béy larger than the top-class probability divided by
tween/before/after the arguments. In all experiments0. Otherwise, we use only the top entity class.
reported in this paper we use a context size of 1 We performed little tuning of the PADUM for
word (or chunk) to the left/right of the correspond-RMD. We setl’; = 1.0, which is the largest ac-
ing relation. Theentities function extracts the top ceptable value since we work with normalized fea-
N predicted entity classes for the two arguments arttire vectors, and’_; = 0.01.
constructs all possible combinations between them. i
Each entity class is expanded in this combinatiofi-2 Evaluation Results
with its position in the list of predicted classes, e.g.Jable 8 lists our official ACE score for the EMD
1 for the class with the highest confidence, 2 for thevaluation. For brevity we include only the scores
second, etc. Theath function constructs two se- for the seven entity types. Tables 4 and 5 list the
quences, one of chunk syntactic labels and one tfpe and subtype scores for the RMD evaluation.
head words, for the sequence of chunks between thiée three tables indicate that our IE system has ro-

two relation arguments. bust performance on the two tasks: we obtain a cost-
based EMD value score of 75.0 (with a value-based
6 Experiments F score of 83.3), and a cost-based RMD value score

of 33.1 (with a value-based F score of 54.5). We find
In this section we report our results in the officiakyage results very encouraging: we obtain state-of-
ACE 2007 evaluation and also an analysis of the kéye_art RMD results with a very simple architecture
features of our system: the PADUM for RMD andang feature space, using only linear kernels in the
the strategy to handle entity classification ambigUirearning tasks, and without any form of co-reference
tes. resolution. The next subsection shows that most of
6.1 Setup the performance boost is causeq by the PADUM, and

’ some by the novel system architecture.

We trained and tested our IE system on the ACE In the EMD task we score above average on
2007 English data. The corpus contains 599 filethe entities that are well represented in the data
for training, 254 for EMD testing, and 155 for RMD and for which we have additional features, e.g.,
testing (the RMD test corpus is a subset of the EMIBPE and PER, and not so well for classes with
test set). The corpus is annotated with 7 entity typefew examples in the data, e.gEAC and WEA.
subdivided in 44 subtypes, and 6 relation types witNote that we have not used any ACE-specific
18 subtypes. Since the corpus does not have a dgazetteers in this paper. The same behavior repeats
velopment section, we tuned the parameters of ofsr RMD: we score badly for relations with very
system on the training section using five-fold crosgew examples, e.g.,PART- WHOLE. Arti f act

validation. or ORG AFF. Founder, and score well for
After tuning, we configured the system with therelations that are unambiguous and/or have
following parameters. We useqd = 1.0 and\, = more examples, e.g.,PER-SCC. Family or

0.5 in the combination stage. Intuitively, this indi- ORG AFF. Enpl oynment.  These observations
cates that we trust the EMD system twice as muchighlight the fact that even an algorithm tailored for
as the RMD system. This matches our empirical resparse data such as the PADUM has its limitations.



Count Cost (%)

Ent Detection Rec Detection Rec | Value Value-based

Tot FA | Miss | Err FA | Miss | Err (%) Pre | Rec F

FAC 719 67 244 | 212 86 | 25,9 | 144 | 511 | 72.2| 59.7 | 65.3
GPE | 3198 | 165 | 385 | 775 36 | 10.1 | 10.8| 756 | 84.7| 79.2 | 81.8
LOC 422 50 135 | 152 || 10.2| 229 | 17.3| 49.6 | 68.5| 59.8 | 63.8
ORG | 2677 | 157 | 475 | 1119 58 | 16.4 | 14.1| 63.6 | 77.7| 69.5| 73.4
PER | 10359 | 560 | 804 | 2285 | 6.9 8.2 1.7 | 83.2 | 91.3| 90.1| 90.7
VEH 413 16 118 95 32| 257 | 47 | 66.4 | 89.8| 69.6 | 78.4
WEA 335 21 124 | 136 || 10.6 | 42.0 | 2.6 | 448 | 80.8 | 55.4 | 65.7

fotal | 18123 ] 1036 ] 2285] 4774 ] 58 | 11.8 | 7.4 | 750 | 85.9] 80.8 | 833

Table 3: EMD scores in the ACE evaluation for the seven entity types.

Count Cost (%)

Ent Detection | Rec Detection | Rec | Value Value-based

Tot | FA | Miss | Err FA | Miss | Err (%) Pre | Rec F
ART 261 38 157 84 91 | 639 | 25| 245 | 742 | 33.6 | 46.2
GEN-AFF 235 28 120 92 91 | 515 | 50| 345 | 75.6| 43.6 | 55.3
ORG-AFF 503 71 216 | 237 96 | 454 | 40| 41.0 | 789| 50.6 | 61.6
PART-WHOLE | 354 57 182 | 110 || 12.1| 489 | 22 | 36.8 | 77.4| 48.9| 59.9
PER-SOC 213 | 24 90 | 116 56 | 385 | 24 | 535 | 88.0] 59.1| 70.7
PHYS 428 76 298 | 113 87 |1 691 62| 160 | 62.3| 24.7| 354
total [ 1994129411063 ] 752 94 [ 535] 40 ] 331 [76.1] 425]545]

Table 4: RMD scores in the ACE evaluation for the six relation types.

Count Cost (%)
Ent Detection | Rec Detection | Rec | Value Value-based
Tot | FA | Miss | Err FA [ Miss | Err | (%) Pre | Rec F
Artifact 14 0 13 1 0.0 | 920 | 24 5.6 70.0| 5.6 | 104
Business 63 4 39 24 22 | 63.8| 3.4 | 30.7 | 85.6| 328 | 475
Citizen... 171 23 83 73 105] 496 | 5.7 | 34.1 | 73.3| 446 | 55.5
Employment 344 61 113 | 189 || 12.1| 348 | 40 | 49.1 | 79.1| 61.2| 69.0
Family 118 | 19 32 79 86 | 209] 04 | 70.1 | 89.7| 78.7] 83.8
Founder 6 0 5 1 0.0 | 88.8| 34 7.8 70.0| 7.8 | 141
Geographical 223 33 102 71 104 | 420 | 1.9 | 457 | 82.1| 56.1| 66.7
Investor... 8 0 5 3 0.0 | 57.1 ] 29 | 40.0 | 93.3| 40.0| 56.0
Lasting-Personal| 32 1 19 13 19 | 506 | 7.8 | 39.8 | 81.2| 41.6 | 55.0
Located 382 | 72 | 263 | 102 9.2 | 683 ] 6.6 | 159 | 61.4| 25.1] 35.6
Membership 96 8 55 33 6.0 | 61.3| 42 | 285 | 77.2| 345 | 47.7
Near 46 4 35 11 49 | 75.2 | 3.2 16.7 | 72.8 | 21.6 | 33.3
Org-Location 64 5 37 19 59 | 55,6 | 3.2 | 353 | 82.0| 41.2 | 54.8
Ownership 15 2 13 2 50 | 875 | 0.0 7.5 714 125 21.3
Sports-Affiliation 17 0 15 2 0.0 | 88.4 | 3.5 8.1 70.0| 8.1 | 146
Student-Alum 17 0 10 7 0.0 | 60.0| 75| 325 | 81.2| 325]| 46.4
Subsidiary 117 | 24 67 38 || 16.1]| 588 | 29 | 22.2 | 66.8| 38.3| 48.7
User-Owner... 261 38 157 84 9.1 | 639 | 25| 245 | 742 | 33.6 | 46.2
total [ 1994 294 [ 1063 752 ] 9.4 [ 535 40 | 33.1 | 76.1] 425] 54.5]

Table 5: RMD scores in the ACE evaluation for the 18 relation subtypes.



We believe that in order to achieve truly operational Precision| Recall Fr

performance one has to look at semi-supervisedPADUM, 1 epoch | 65.71% | 45.48% | 53.75

methods and/or knowledge-rich systems. PADUM, 5 epochs| 62.96% | 56.31% | 59.44
With respect to the quantitative performance, Avg PA, 1 epoch | 67.94% | 40.28% | 50.58

all EMD system processes were performed on |aAvg PA, 5 epochs | 66.64% | 52.19% | 58.53

2.4GHz AMD Opteron machine. We applied the SVM 50.62% | 63.72% | 56.42

second-order feature map without modifications to

the original tagger implementation, which is notfable 6: Comparison of PA, PADUM, and SVM for

conceived for handling efficiently tens of millions RMD using gold entity mentions.

of features. While the second-order tagger is slow,

it could be substantially optimized to achieve bet- _ Precision| Recall [ F

er peformance. Curently, the second-order taggeFeCoaion oty - | e2s0 [ ¢ 2052

takes about 1 hour/epoch to train. The trained sys-

tem in prediction labels about 50 words/second. The Table 7: Analysis of EMD scores.

RMD system takes 47 seconds/epoch to train on a

Pentium IV computer 3.2GHz and classifies 23,000

words/second (assuming entity mentions are alreadgr one and after five epochs. The table shows that

labeled). the PADUM performs the best out of the three al-
_ gorithms. After 5 epochs, the PADUM has a F
6.3 Analysis score approximately 3 points higher than SVM and

In this subsection we compare: (a) the behavior df point higher than the PA. Moreover, the PADUM
the PADUM for RMD against other known learn-is the most balanced of the three algorithms. As
ing algorithms, and (b) our architecture with otheexpected, the PA is precision-biased (with preci-
typical IE systems. All the experiments reported irsion 14% higher than recall), whereas SVM (in its
this subsection were performed on the training codefault configuration) is recall-biased (with recall
pus using five-fold cross validation. 13% higher than precision). On the other hand,
i the PADUM after 5 epochs has precision and recall
6.3.1 Analysis of the PADUM for RMD scores that are only within 5% of each other. This

For a better understanding of PADUM's behaviolis proof that the dynamic margin adjustment built in
we compare the PADUM with the regular averageghe PADUM is beneficial.

PA and SVM for the prObIem of RMD. Note that the Another advantage of PADUM is its |earning

averaged PA is a special case of the PADUM, whergpeed. For the RMD problem PADUM takes 47
I'+; = 0. We use libsvrh for the implementation of seconds/epoch and usually 5 epochs are sufficient to
the SVM classifier. We Configured libsvm with theconverge. On the other hand SVM (using libsvm’s
following parameters:C’ = 1.0; gamma = 1/k,  C-SVC SVM type) takes over 15 hours to learn a

wherek = 18 is the number of categories (i.e., re-RMD model under the same conditions.
lation subtypes) in the RMD data. We built several

other SVM models with various values for the clas6.3.2 Analysis of the Proposed Architecture

sification penalty costs but saw no improvement in |n this section we analyze our proposed IE archi-
the overall performance. All three algorithms usgecture, where the ambiguities in entity and relation
the same features. To isolate the relation eXtraCtiQﬂassiﬁcation are left in the system and solved 0n|y
component we performed this experiment using golgdt the end.
entity keys and scored only the relation classification Taple 7 and Figure 4 justify the need for ambigu-
task using standard precision/recallifieasures. ity detection in entity classification. Table 7 shows
Table 6 summarizes the results of this experimengyat the | scores of the EMD system when perform-
For the Perceptron algorithms we report results afng only recognition are significantly higher (ap-
Shttp: // wwu csie. ntu. edu. tw ~cj | in/ proximately 14 k points) than the score of recog-
l'i bsvm nition and classification. This indicates that the ma-



0.94 : : : : : : : based value score that is 3.7% lower than our sys-
tem. On the other hand, the difference between our

0.92 - =

- ° architecture and the pipeline approach is not that
09 - ’ 1 large: our cost-based value score is 0.1% larger for

- ossl | EMD and 0.2% larger for RMD. Nevertheless, our
§ . architecture has the additional advantage that all the
< ossp 1 solutions generated are consistent with the ACE do-
084 b | main constraints, which can not be guaranteed for

the pipeline approach.
0.82 -

08 t t s t t t t 7 Conclusions

1 2 3 4 5 6 7 8 9
Number of classes considered by oracle

_ , ___ This paper describes a system for the extraction of
Figure 4: Accuracy of an oracle entity classificationymentions of entities and binary relations. The main
system that selects the best class out of theXop ¢4y hehind the development of this system was ro-

bustness and simplicity: the system is completely

jor failure point for EMD is mention classification. machine learning-based and all learning tasks are
Furthermore, Figure 4, which shows the accuracy éfeveloped using variants of the Perceptron algo-
an oracle entity classification system that selects thghm. Furthermore, we use only syntactic infor-
best class out of the tal¥' classes output by our en- mation that can be efficiently extracted from text
tity re-classifier, indicates that the classification actnewswire, blogs, etc): POS tagging and partial syn-
curacy is significantly improved when considering@ctic analysis (i.e., chunking).
the top two or three classes. For example, the ora- The paper’s contributions include several novel
cle has an accuracy of approximately 89% with thédeas. First, we define a new large-margin Per-
top 3 classes (out of 45 categories: 44 subtypes plgeptron Algorithm with Dynamic Uneven Margins
one for theNl L category). This analysis indicates(PADUM), which is capable of dynamically ad-
that, although mention classification is the weakeststing its margins in relation to the generalization
point in EMD, working with the top two or three performance of the learned model. Furthermore,
categories improves significantly the quality of théhe PADUM manages different margins for posi-
EMD output. This motivated us in designing the IEtive and negative examples to address the sample
system shown in Figure 2. unbalance that is common in many learning prob-
Table 8 compares our architecture with two othelems. We show that for the task of relation extrac-
popular IE architectures: (a) the pipeline approachion the PADUM performs significantly better than
where the EMD and RMD components are sequerdVM even though its training time is two orders of
tially linked and only the top output is propagatednagnitude smaller than SVM's.
between the layers, hence no inference is needed,Second, we propose a novel strategy to mitigate
and (b) the approach of (Roth and Yih, 2004), whiclihe propagation of errors made in early processing
combines the EMD and RMD outputs using an instages; e.g., entity classification. If ambiguities are
ference approach close to ours, but the two compe@etected, i.e, the corresponding component is not
nents are independently trained without any commugonfident enough in its output, we let several hy-
nication between them. We called our implementapotheses flow through the system. All ambiguities
tion of the latter “pseudo Roth & Yih” because weare solved only at the end using a simple approxi-
used the approximated inference described in Semated inference approach. We provided empirical
tion 2 rather than the exact inference introduced igvidence that our approach is better than other tra-
the original article. Table 8 shows that it is impor-ditional IE architectures. Furthermore, our system
tant to feed entity information to RMD: the “pseudoguarantees a solution that is consistent with the do-
Roth & Yih” system, which trains the RMD com- main constraints.
ponent without entity class information, has a cost- We evaluated our system within the ACE 2007



Count Cost (%)
Ent Detection Rec Detection | Rec | Value Value-based
EMD Tot FA | Miss Err FA | Miss | Err | (%) Pre | Rec F
This paper 54824 | 2907 | 5805 | 16394 | 52| 9.0 | 6.7 | 79.1 | 87.6 | 84.3| 85.9
Pipeline 54824 | 2907 | 5805 | 16406 | 52| 9.0 | 6.7 | 79.0 | 87.6 | 84.2 | 85.9
Pseudo Roth & Yih| 54824 | 2907 | 5805 | 164001 5.2 9.0 | 6.7 | 79.1 | 87.6 | 84.3| 85.9
Count Cost (%
Ent Detection Rec Detection | Rec | Value Value-based
RMD Tot FA | Miss | Err FA | Miss | Err | (%) Pre | Rec F
This paper 8738 | 1661 | 4289 | 3681 || 12.1| 48.7 | 44 | 348 | 740 | 469 | 57.4
Pipeline 8738 | 1933 | 4077 | 3868 || 14.0| 46.6 | 4.8 | 346 | 721 ] 486 | 58.1
Pseudo Roth & Yih| 8738 | 1310 | 4865 | 3244 || 9.3 | 559 | 3.7 | 31.1 | 75.6 | 40.4 | 52.7

Table 8: Comparison of our architecture with the pipeline approach artti @al Yih, 2004).

evaluation. We obtain competitive results on bot. Cristianini and J. Shawe-Taylor. 200&wn Introduc-
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