
Ensemble Models for Dependency Parsing:
Cheap and Good?

Mihai Surdeanu and Christopher D. Manning

Stanford University

June 3, 2010



Ensemble Parsing

Parser	
  5	
  

Parser	
  1	
  

Parser	
  3	
  

Parser	
  4	
  

Parser	
  6	
  

Parser	
  2	
  

Ensemble	
  Parser	
  



Ensemble Parsing

Parser	
  5	
  

Parser	
  1	
  

Parser	
  3	
  

Parser	
  4	
  

Parser	
  6	
  

Parser	
  2	
  

Ensemble	
  Parser	
  

?	
  
Many questions still unanswered despite all the previous work
This work: empirical answers for projective English dependency parsing



Setup

Corpus: syntactic dependencies of the CoNLL 2008-09 shared tasks

7 individual parsing models:

Devel In domain Out of domain
LAS LAS LAS

MST 85.36 87.07 80.48
Malt→AE 84.24 85.96 78.74
Malt→CN 83.75 85.61 78.55
Malt→AS 83.74 85.36 77.23
Malt←AS 82.43 83.90 76.69
Malt←CN 81.75 83.53 77.29
Malt←AE 80.76 82.51 76.18



Scoring Models for Parser Combination

Parser	
  1	
   Parser	
  2	
   Parser	
  3	
  

Ensemble	
  

Dependency	
  Scoring	
  

Output	
  Construc<on	
  

Which scoring model is best?
→ Unweighted voting?
→Weighted voting? Weighted by what?
→ Meta-classification?



Scoring Models for Parser Combination

Parser	
  1	
   Parser	
  2	
   Parser	
  3	
  

Ensemble	
  

Dependency	
  Scoring	
  

Output	
  Construc<on	
  

Which scoring model is best?
→ Unweighted voting?
→Weighted voting? Weighted by what?
→ Meta-classification?



Scoring Models: Voting

Unweighted Weighted by Weighted by Weighted by ...
POS of modifier label of dep. dep. length

LAS LAS LAS LAS
3 86.03 86.02 85.53 85.85
4 86.79 86.68 86.38 86.46
5 86.98 86.95 86.60 86.87
6 87.14 87.17 86.74 86.91
7 86.81 86.82 86.50 86.71

Weighting does not really make a difference!
More individual parsers helps, but up to a point.



Scoring Models: Meta-classification

Can we improve dependency scoring through
meta-classification?

No.
→ We implemented a L2-regularized logistic regression classifier

using as features: identifiers of the base models, POS tags of
head and modifier, labels of dependencies, length of depen-
dencies, length of sentence, and combinations of the above.

→ No improvement over the unweighted voting approach.



Scoring Models: Meta-classification

Can we improve dependency scoring through
meta-classification?
No.
→ We implemented a L2-regularized logistic regression classifier

using as features: identifiers of the base models, POS tags of
head and modifier, labels of dependencies, length of depen-
dencies, length of sentence, and combinations of the above.

→ No improvement over the unweighted voting approach.



Meta-classification Analysis

Minority dependencies (MD): dependencies that disagree with
the majority vote.

Precision of MDs: ratio of MDs in a given context (e.g., POS of
modifier is NN and parser is MST) that are correct.

Meta-classification can outperform majority vote only when the
number of MDs in contexts with precision > 50% is large.

→But these are less than 0.7% of total dependencies!



Re-parsing Algorithms

Parser	
  1	
   Parser	
  2	
   Parser	
  3	
  

Ensemble	
  

Dependency	
  Scoring	
  

Output	
  Construc<on	
  

How common are badly-formed trees for word-by-word combination?
Which is the best re-parsing strategy?



Re-parsing Algorithms

In domain Out of domain
Zero roots 0.83% 0.70%

Multiple roots 3.37% 6.11%
Cycles 4.29% 4.23%
Total 7.46% 9.64%

Percentage of badly-formed trees for word-by-word combination

In domain Out of domain
LAS LAS

Word by word (O(N)) 88.89 82.13∗

Eisner (exact – O(N3) ) 88.83∗ 81.99
Attardi (approximate – O(N)) 88.70 81.82

Performance of re-parsing algorithms

Badly-formed trees are common! But approximate re-parsing
algorithms perform as well as exact ones!

∗ indicates statistical significance over the next lower ranked model



Re-parsing Algorithms

In domain Out of domain
Zero roots 0.83% 0.70%

Multiple roots 3.37% 6.11%
Cycles 4.29% 4.23%
Total 7.46% 9.64%

Percentage of badly-formed trees for word-by-word combination

In domain Out of domain
LAS LAS

Word by word (O(N)) 88.89 82.13∗

Eisner (exact – O(N3) ) 88.83∗ 81.99
Attardi (approximate – O(N)) 88.70 81.82

Performance of re-parsing algorithms

Badly-formed trees are common! But approximate re-parsing
algorithms perform as well as exact ones!

∗ indicates statistical significance over the next lower ranked model



Combination Strategies

How important is it to combine parsers at learning time?
→ E.g., stacking: MSTMalt= MST + Malt features

In domain Out of domain
LAS LAS

ensemble3
100% 88.83∗ 81.99∗

ensemble1
100% 88.01∗ 80.78

ensemble3
50% 87.45 81.12

MSTMalt 87.45∗ 80.25∗

ensemble1
50% 86.74 79.44

The advantages gained from combining parsers at learning time can
be easily surpassed by runtime combination models that have access
to more base parsers!

The ensemble models are more robust out of domain



Combination Strategies

How important is it to combine parsers at learning time?
→ E.g., stacking: MSTMalt= MST + Malt features

In domain Out of domain
LAS LAS

ensemble3
100% 88.83∗ 81.99∗

ensemble1
100% 88.01∗ 80.78

ensemble3
50% 87.45 81.12

MSTMalt 87.45∗ 80.25∗

ensemble1
50% 86.74 79.44

The advantages gained from combining parsers at learning time can
be easily surpassed by runtime combination models that have access
to more base parsers!

The ensemble models are more robust out of domain



Comparison with State of the Art Parsers

In domain Out of domain
LAS LAS

CoNLL 2008 #1 (Johansson and Nugues) 90.13∗ 82.81∗

ensemble3
100% 88.83∗ 81.99∗

CoNLL 2008 #2 (Zhang et al.) 88.14 80.80
ensemble1

100% 88.01 80.78

Our best ensemble model is second

In the out-of-domain corpus, performance is within 1% LAS of a parser
that uses second-order features and is O(N4)

The ensemble models are more robust out of domain



Conclusion: Less Is More

The diversity of base parsers is more important than complex
learning models for parser combination (e.g., meta-classification,
stacking)

Well-formed dependency trees can be guaranteed without
significant performance loss by linear-time approximate
re-parsing algorithms

Unweighted voting performs as well as weighted voting for the
re-parsing of candidate dependencies

Ensemble parsers that are both accurate and fast can be rapidly
developed with minimal effort



Thank you!

Many thanks to Johan Hall, Joakim Nivre, Ryan McDonald, and
Giuseppe Attardi

Code: www.surdeanu.name/mihai/ensemble/

Questions?

www.surdeanu.name/mihai/ensemble/

