
Administration Introduction Inverted index Processing Boolean queries Query optimization Course overview

.

.

Introduction to Information Retrieval
IIR 1: Boolean Retrieval

Mihai Surdeanu
(Based on slides by Hinrich Schütze at informationretrieval.org)

Fall 2015

Boolean Retrieval 1 / 87

informationretrieval.org

Administration Introduction Inverted index Processing Boolean queries Query optimization Course overview

Take-away

Why you should take this course

Admin issues

Boolean Retrieval: Design and data structures of a simple
information retrieval system

What topics will be covered in this class?

Boolean Retrieval 2 / 87

Administration Introduction Inverted index Processing Boolean queries Query optimization Course overview

Why you should take this course (take 1)

Boolean Retrieval 3 / 87

Administration Introduction Inverted index Processing Boolean queries Query optimization Course overview

Outline

...1 Administration

...2 Introduction

...3 Inverted index

...4 Processing Boolean queries

...5 Query optimization

...6 Course overview

Boolean Retrieval 4 / 87

Administration Introduction Inverted index Processing Boolean queries Query optimization Course overview

Instructor information

Instructor: Mihai Surdeanu
Email: msurdeanu@email.arizona.edu
Office: Gould-Simpson 746
Office Hours: by request

TA: Enrique Noriega
Email: enoriega@email.arizona.edu
Office: Gould-Simpson 934
Office Hours: Wednesday, 2 – 3PM

Boolean Retrieval 5 / 87

mailto:msurdeanu@email.arizona.edu
mailto:enoriega@email.arizona.edu

Administration Introduction Inverted index Processing Boolean queries Query optimization Course overview

Website and syllabus

Website:
http:

//www.surdeanu.info/mihai/teaching/cs483-fall15/

Syllabus:
http://www.surdeanu.info/mihai/teaching/

cs483-fall15/IR-syllabus.pdf

Piazza:
https://piazza.com/class/idhoajqezmu1qi

See website and syllabus for: code of conduct, classroom
electronics, DRC accommodations, non-discrimination policy,
confidentiality of student records, etc.

But most materials will actually be in D2L

Boolean Retrieval 6 / 87

http://www.surdeanu.info/mihai/teaching/cs483-fall15/
http://www.surdeanu.info/mihai/teaching/cs483-fall15/
http://www.surdeanu.info/mihai/teaching/cs483-fall15/IR-syllabus.pdf
http://www.surdeanu.info/mihai/teaching/cs483-fall15/IR-syllabus.pdf
https://piazza.com/class/idhoajqezmu1qi

Administration Introduction Inverted index Processing Boolean queries Query optimization Course overview

Prerequisites

Know how to program and have a decent understanding of
data structures such as hash maps and trees: CSC 345

Ideally, Math 129 (Calc 2). However, we will cover the
necessary math in class.

Boolean Retrieval 7 / 87

Administration Introduction Inverted index Processing Boolean queries Query optimization Course overview

Prerequisites: does this look scary?
..
IntersectWithSkips(p1, p2)
1 answer ← ⟨ ⟩
2 while p1 ̸= nil and p2 ̸= nil
3 do if docID(p1) = docID(p2)
4 then Add(answer , docID(p1))
5 p1 ← next(p1)
6 p2 ← next(p2)
7 else if docID(p1) < docID(p2)
8 then if hasSkip(p1) and (docID(skip(p1)) ≤ docID(p2))
9 then while hasSkip(p1) and (docID(skip(p1)) ≤ docID(p2))

10 do p1 ← skip(p1)
11 else p1 ← next(p1)
12 else if hasSkip(p2) and (docID(skip(p2)) ≤ docID(p1))
13 then while hasSkip(p2) and (docID(skip(p2)) ≤ docID(p1))
14 do p2 ← skip(p2)
15 else p2 ← next(p2)
16 return answer

Boolean Retrieval 8 / 87

Administration Introduction Inverted index Processing Boolean queries Query optimization Course overview

Prerequisites: does this look scary?
..

||x ||2 =
√∑

i

x2i

cos(q⃗, d⃗) = sim(q⃗, d⃗) =
q⃗ · d⃗
|⃗q||d⃗ |

=

∑|V |
i=1 qidi√∑|V |

i=1 q
2
i

√∑|V |
i=1 d

2
i

Dot product, matrix multiplication, Bayes rule

Boolean Retrieval 9 / 87

Administration Introduction Inverted index Processing Boolean queries Query optimization Course overview

Choosing a programming language
My recommendations

Scala

Java

Python

C/C++

Boolean Retrieval 10 / 87

Administration Introduction Inverted index Processing Boolean queries Query optimization Course overview

Java

Pros

Pretty fast
Probably the most common language for IR and NLP
Clean exception handling
Statically typed
Garbage collection
Several great IDEs

Cons

Syntax too verbose
Inconsistent semantics due to enforced backwards compatibility
(primitive types vs. objects, equality, etc.)

Boolean Retrieval 11 / 87

Administration Introduction Inverted index Processing Boolean queries Query optimization Course overview

Scala

Pros

Pretty fast
“Hot” language for IR, NLP, ML, distributed computing, web
development
Clean, transparent exception handling
Clean, minimalist syntax
Consistent semantics
Statically typed
Garbage collection
At least one great IDE (IntelliJ)
Fully compatible with Java (use all Java libraries)

Cons

It has some “dark corners”
Backwards compatibility not guaranteed

Boolean Retrieval 12 / 87

Administration Introduction Inverted index Processing Boolean queries Query optimization Course overview

Python

Pros

Clean syntax
Popular: many NLP/ML libraries exist
Clean exception handling

Cons

Slow
Dynamically typed
No great IDE

Boolean Retrieval 13 / 87

Administration Introduction Inverted index Processing Boolean queries Query optimization Course overview

C/C++

Pros

As fast as it gets

Cons

Too many to list

Boolean Retrieval 14 / 87

Administration Introduction Inverted index Processing Boolean queries Query optimization Course overview

Comparison

More benchmarks:
http://benchmarksgame.alioth.debian.org/u64/benchmark.php?test=all&lang=all&data=u64

Boolean Retrieval 15 / 87

http://benchmarksgame.alioth.debian.org/u64/benchmark.php?test=all&lang=all&data=u64

Administration Introduction Inverted index Processing Boolean queries Query optimization Course overview

Textbook

Introduction to Information Retrieval, by Manning et al.

http://nlp.stanford.edu/IR-book/

Boolean Retrieval 16 / 87

http://nlp.stanford.edu/IR-book/

Administration Introduction Inverted index Processing Boolean queries Query optimization Course overview

Grading

Final grade = 4 assignments + 2 exams + 1 project + 1
presentation + in-class participation

First assignment has been posted. Due September 13! Let’s
take a quick look at the assignment.

Undergraduate vs. graduate requirements

Boolean Retrieval 17 / 87

Administration Introduction Inverted index Processing Boolean queries Query optimization Course overview

Grading scheme

Component Weight
Written assignments 300 pts
Midterm Exam 200 pts
Final Exam 250 pts
Programming Project 200 pts
Final Presentation 25 pts
In-class Participation 25 pts

Total 1000 pts

Grade Point Range
A 900 – 1000

B 800 – 899

C 700 – 799

D 600 – 699

E 0 – 599

Boolean Retrieval 18 / 87

Administration Introduction Inverted index Processing Boolean queries Query optimization Course overview

Final Project

Option 1: building (parts of) Watson

Option 2: your own idea. Use an existing IR system to
implement a real-world application

Boolean Retrieval 19 / 87

Administration Introduction Inverted index Processing Boolean queries Query optimization Course overview

Late work + attendance policy

Late work is not accepted, except in case of documented
emergency approved by the instructor

Attendance is required

Students who miss class due to illness or emergency are
required to bring documentation

Boolean Retrieval 20 / 87

Administration Introduction Inverted index Processing Boolean queries Query optimization Course overview

Dates

What When
Midterm October 14
Project due December 8 before 11:59PM
Project presentations December 9
Final Between December 11 – 17 (TBA)

Written assignments will be due approximately every three weeks,
as announced by the instructor. All assignments are due in the
D2L dropbox by 11:59 P.M. on the indicated day.

Boolean Retrieval 21 / 87

Administration Introduction Inverted index Processing Boolean queries Query optimization Course overview

Cooperation & Cheating

Students may not discuss individual homework with anybody other
than the instructors and teaching assistants.

Students may not share individual homework solutions with
anybody.

Students may post questions to Piazza, but should refrain from
posting solutions or partial solutions.

Students may not share test cases with anybody.

Students may share class notes with anybody.

Students may not seek individual homework help from anybody
other than the instructors, teaching assistants, or departmental
tutors.

If permitted, the use of open source or third party materials in
student submissions must be clearly identified and credited.
Assignment and project submissions must be substantially the work
of the student who submits the work.

Boolean Retrieval 22 / 87

Administration Introduction Inverted index Processing Boolean queries Query optimization Course overview

Cooperation & Cheating

Students who violate the Code should expect a penalty that is
greater than the value of the work in question up to and
including failing the course.

A record of the incident will be sent to the Dean of Students
office. If you have been involved in other Code violations, the
Dean of Students may impose additional sanctions.

Boolean Retrieval 23 / 87

Administration Introduction Inverted index Processing Boolean queries Query optimization Course overview

Outline

...1 Administration

...2 Introduction

...3 Inverted index

...4 Processing Boolean queries

...5 Query optimization

...6 Course overview

Boolean Retrieval 24 / 87

Administration Introduction Inverted index Processing Boolean queries Query optimization Course overview

Definition of information retrieval

Information retrieval (IR) is finding material (usually documents) of
an unstructured nature (usually text) that satisfies an information
need from within large collections (usually stored on computers).

Boolean Retrieval 25 / 87

Administration Introduction Inverted index Processing Boolean queries Query optimization Course overview

Definition of information retrieval

Information retrieval (IR) is finding material (usually documents) of
an unstructured nature (usually text) that satisfies an information
need from within large collections (usually stored on computers).

Boolean Retrieval 25 / 87

Administration Introduction Inverted index Processing Boolean queries Query optimization Course overview

Definition of information retrieval

Information retrieval (IR) is finding material (usually documents) of
an unstructured nature (usually text) that satisfies an information
need from within large collections (usually stored on computers).

Boolean Retrieval 25 / 87

Administration Introduction Inverted index Processing Boolean queries Query optimization Course overview

Definition of information retrieval

Information retrieval (IR) is finding material (usually documents) of
an unstructured nature (usually text) that satisfies an information
need from within large collections (usually stored on computers).

Boolean Retrieval 25 / 87

Administration Introduction Inverted index Processing Boolean queries Query optimization Course overview

Definition of information retrieval

Information retrieval (IR) is finding material (usually documents) of
an unstructured nature (usually text) that satisfies an information
need from within large collections (usually stored on computers).

Boolean Retrieval 25 / 87

Administration Introduction Inverted index Processing Boolean queries Query optimization Course overview

Definition of information retrieval

Information retrieval (IR) is finding material (usually documents) of
an unstructured nature (usually text) that satisfies an information
need from within large collections (usually stored on computers).

Boolean Retrieval 25 / 87

Administration Introduction Inverted index Processing Boolean queries Query optimization Course overview

Definition of information retrieval

Information retrieval (IR) is finding material (usually documents) of
an unstructured nature (usually text) that satisfies an information
need from within large collections (usually stored on computers).

Boolean Retrieval 25 / 87

Administration Introduction Inverted index Processing Boolean queries Query optimization Course overview

Companies using IR

Google, Yahoo, Microsoft: search web, email, choose ads

Facebook: search friends’ posts, choose wall

Twitter: search tweets

HP Autonomy: enterprise search

Pandora: music (!) search

Boolean Retrieval 28 / 87

Administration Introduction Inverted index Processing Boolean queries Query optimization Course overview

Why you should take this course

Take 2: IR is important

Take 3:

This is a gateway course for data science and machine learning
Real-world applications of programming + data structures +
probability theory

Boolean Retrieval 29 / 87

Administration Introduction Inverted index Processing Boolean queries Query optimization Course overview

Boolean retrieval

The Boolean model is arguably the simplest model to base an
information retrieval system on.

Queries are Boolean expressions, e.g., Caesar and Brutus

The seach engine returns all documents that satisfy the
Boolean expression.

Does Google use the Boolean model?

Boolean Retrieval 30 / 87

Administration Introduction Inverted index Processing Boolean queries Query optimization Course overview

Boolean retrieval

The Boolean model is arguably the simplest model to base an
information retrieval system on.

Queries are Boolean expressions, e.g., Caesar and Brutus

The seach engine returns all documents that satisfy the
Boolean expression.

Does Google use the Boolean model?

Boolean Retrieval 30 / 87

Administration Introduction Inverted index Processing Boolean queries Query optimization Course overview

Does Google use the Boolean model?

On Google, the default interpretation of a query [w1 w2

. . .wn] is w1 AND w2 AND . . . AND wn

Cases where you get hits that do not contain one of the wi :

anchor text
page contains variant of wi (morphology, spelling correction,
synonym)
long queries (n large)
boolean expression generates very few hits

Simple Boolean vs. Ranking of result set

Simple Boolean retrieval returns matching documents in no
particular order.
Google (and most well designed Boolean engines) rank the
result set – they rank good hits (according to some estimator
of relevance) higher than bad hits.

Boolean Retrieval 31 / 87

Administration Introduction Inverted index Processing Boolean queries Query optimization Course overview

Outline

...1 Administration

...2 Introduction

...3 Inverted index

...4 Processing Boolean queries

...5 Query optimization

...6 Course overview

Boolean Retrieval 32 / 87

Administration Introduction Inverted index Processing Boolean queries Query optimization Course overview

Unstructured data in 1650: Shakespeare

Boolean Retrieval 33 / 87

Administration Introduction Inverted index Processing Boolean queries Query optimization Course overview

Unstructured data in 1650

Which plays of Shakespeare contain the words Brutus and
Caesar, but not Calpurnia?

One could grep all of Shakespeare’s plays for Brutus and
Caesar, then strip out lines containing Calpurnia.

Why is grep not the solution?

Slow (for large collections)
grep is line-oriented, IR is document-oriented
“not Calpurnia” is non-trivial
Other operations (e.g., find the word Romans near
countryman) not feasible

Boolean Retrieval 34 / 87

Administration Introduction Inverted index Processing Boolean queries Query optimization Course overview

Unstructured data in 1650

Which plays of Shakespeare contain the words Brutus and
Caesar, but not Calpurnia?

One could grep all of Shakespeare’s plays for Brutus and
Caesar, then strip out lines containing Calpurnia.

Why is grep not the solution?

Slow (for large collections)
grep is line-oriented, IR is document-oriented
“not Calpurnia” is non-trivial
Other operations (e.g., find the word Romans near
countryman) not feasible

Boolean Retrieval 34 / 87

Administration Introduction Inverted index Processing Boolean queries Query optimization Course overview

Term-document incidence matrix
..

Anthony Julius The Hamlet Othello Macbeth . . .
and Caesar Tempest

Cleopatra
Anthony 1 1 0 0 0 1
Brutus 1 1 0 1 0 0
Caesar 1 1 0 1 1 1
Calpurnia 0 1 0 0 0 0
Cleopatra 1 0 0 0 0 0
mercy 1 0 1 1 1 1
worser 1 0 1 1 1 0
. . .
Entry is 1 if term occurs. Example: Calpurnia occurs in Julius Caesar.
Entry is 0 if term doesn’t occur. Example: Calpurnia doesn’t occur in The
tempest.

Boolean Retrieval 35 / 87

Administration Introduction Inverted index Processing Boolean queries Query optimization Course overview

Term-document incidence matrix
..

Anthony Julius The Hamlet Othello Macbeth . . .
and Caesar Tempest

Cleopatra
Anthony 1 1 0 0 0 1
Brutus 1 1 0 1 0 0
Caesar 1 1 0 1 1 1
Calpurnia 0 1 0 0 0 0
Cleopatra 1 0 0 0 0 0
mercy 1 0 1 1 1 1
worser 1 0 1 1 1 0
. . .
Entry is 1 if term occurs. Example: Calpurnia occurs in Julius Caesar.
Entry is 0 if term doesn’t occur. Example: Calpurnia doesn’t occur in The
tempest.

Boolean Retrieval 35 / 87

Administration Introduction Inverted index Processing Boolean queries Query optimization Course overview

Term-document incidence matrix
..

Anthony Julius The Hamlet Othello Macbeth . . .
and Caesar Tempest

Cleopatra
Anthony 1 1 0 0 0 1
Brutus 1 1 0 1 0 0
Caesar 1 1 0 1 1 1
Calpurnia 0 1 0 0 0 0
Cleopatra 1 0 0 0 0 0
mercy 1 0 1 1 1 1
worser 1 0 1 1 1 0
. . .
Entry is 1 if term occurs. Example: Calpurnia occurs in Julius Caesar.
Entry is 0 if term doesn’t occur. Example: Calpurnia doesn’t occur in The
tempest.

Boolean Retrieval 35 / 87

Administration Introduction Inverted index Processing Boolean queries Query optimization Course overview

Incidence vectors

So we have a 0/1 vector for each term.

To answer the query Brutus and Caesar and not
Calpurnia:

Take the vectors for Brutus, Caesar, and Calpurnia
Complement the vector of Calpurnia
Do a (bitwise) and on the three vectors
110100 and 110111 and 101111 = 100100

Boolean Retrieval 36 / 87

Administration Introduction Inverted index Processing Boolean queries Query optimization Course overview

Incidence vectors

So we have a 0/1 vector for each term.

To answer the query Brutus and Caesar and not
Calpurnia:

Take the vectors for Brutus, Caesar, and Calpurnia
Complement the vector of Calpurnia
Do a (bitwise) and on the three vectors
110100 and 110111 and 101111 = 100100

Boolean Retrieval 36 / 87

Administration Introduction Inverted index Processing Boolean queries Query optimization Course overview

0/1 vector for Brutus
..

Anthony Julius The Hamlet Othello Macbeth . . .
and Caesar Tempest

Cleopatra
Anthony 1 1 0 0 0 1
Brutus 1 1 0 1 0 0
Caesar 1 1 0 1 1 1
Calpurnia 0 1 0 0 0 0
Cleopatra 1 0 0 0 0 0
mercy 1 0 1 1 1 1
worser 1 0 1 1 1 0
. . .

result: 1 0 0 1 0 0

Boolean Retrieval 37 / 87

Administration Introduction Inverted index Processing Boolean queries Query optimization Course overview

Answers to query

Anthony and Cleopatra, Act III, Scene ii
Agrippa [Aside to Domitius Enobarbus]: Why, Enobarbus,

When Antony found Julius Caesar dead,
He cried almost to roaring; and he wept
When at Philippi he found Brutus slain.

Hamlet, Act III, Scene ii
Lord Polonius: I did enact Julius Caesar: I was killed i’ the

Capitol; Brutus killed me.

Boolean Retrieval 38 / 87

Administration Introduction Inverted index Processing Boolean queries Query optimization Course overview

Bigger collections

Consider N = 106 documents, each with about 1000 tokens

⇒ total of 109 tokens

On average 6 bytes per token, including spaces and
punctuation ⇒ size of document collection is about 6 · 109 =
6 GB

Assume there are M = 500,000 distinct terms in the collection

(Notice that we are making a term/token distinction.)

Boolean Retrieval 39 / 87

Administration Introduction Inverted index Processing Boolean queries Query optimization Course overview

Can’t build the incidence matrix

M = 500,000× 106 = half a trillion 0s and 1s.

But the matrix has no more than one billion 1s.

Matrix is extremely sparse.

What is a better representations?

We only record the 1s.

Boolean Retrieval 40 / 87

Administration Introduction Inverted index Processing Boolean queries Query optimization Course overview

Inverted Index

For each term t, we store a list of all documents that contain t.

Brutus −→ 1 2 4 11 31 45 173 174

Caesar −→ 1 2 4 5 6 16 57 132 . . .

Calpurnia −→ 2 31 54 101

...︸ ︷︷ ︸ ︸ ︷︷ ︸
dictionary postings

Boolean Retrieval 41 / 87

Administration Introduction Inverted index Processing Boolean queries Query optimization Course overview

Inverted Index

For each term t, we store a list of all documents that contain t.

Brutus −→ 1 2 4 11 31 45 173 174

Caesar −→ 1 2 4 5 6 16 57 132 . . .

Calpurnia −→ 2 31 54 101

...︸ ︷︷ ︸ ︸ ︷︷ ︸
dictionary postings

Boolean Retrieval 41 / 87

Administration Introduction Inverted index Processing Boolean queries Query optimization Course overview

Inverted Index

For each term t, we store a list of all documents that contain t.

Brutus −→ 1 2 4 11 31 45 173 174

Caesar −→ 1 2 4 5 6 16 57 132 . . .

Calpurnia −→ 2 31 54 101

...︸ ︷︷ ︸ ︸ ︷︷ ︸
dictionary postings

Boolean Retrieval 41 / 87

Administration Introduction Inverted index Processing Boolean queries Query optimization Course overview

Inverted index construction

...1 Collect the documents to be indexed:

Friends, Romans, countrymen. So let it be with Caesar . . .

...2 Tokenize the text, turning each document into a list of tokens:

Friends Romans countrymen So . . .

...3 Do linguistic preprocessing, producing a list of normalized

tokens, which are the indexing terms: friend roman

countryman so . . .

...4 Index the documents that each term occurs in by creating an
inverted index, consisting of a dictionary and postings.

Boolean Retrieval 42 / 87

Administration Introduction Inverted index Processing Boolean queries Query optimization Course overview

Tokenization and preprocessing
..
Doc 1. I did enact Julius Caesar: I
was killed i’ the Capitol; Brutus killed
me.
Doc 2. So let it be with Caesar. The
noble Brutus hath told you Caesar
was ambitious:

=⇒
Doc 1. i did enact julius caesar i was
killed i’ the capitol brutus killed me
Doc 2. so let it be with caesar the
noble brutus hath told you caesar was
ambitious

Boolean Retrieval 43 / 87

Administration Introduction Inverted index Processing Boolean queries Query optimization Course overview

Generate postings
..

Doc 1. i did enact julius caesar i was
killed i’ the capitol brutus killed me
Doc 2. so let it be with caesar the
noble brutus hath told you caesar was
ambitious

=⇒

term docID
i 1
did 1
enact 1
julius 1
caesar 1
i 1
was 1
killed 1
i’ 1
the 1
capitol 1
brutus 1
killed 1
me 1
so 2
let 2
it 2
be 2
with 2
caesar 2
the 2
noble 2
brutus 2
hath 2
told 2
you 2
caesar 2
was 2
ambitious 2

Boolean Retrieval 44 / 87

Administration Introduction Inverted index Processing Boolean queries Query optimization Course overview

Sort postings
..
term docID
i 1
did 1
enact 1
julius 1
caesar 1
i 1
was 1
killed 1
i’ 1
the 1
capitol 1
brutus 1
killed 1
me 1
so 2
let 2
it 2
be 2
with 2
caesar 2
the 2
noble 2
brutus 2
hath 2
told 2
you 2
caesar 2
was 2
ambitious 2

=⇒

term docID
ambitious 2
be 2
brutus 1
brutus 2
capitol 1
caesar 1
caesar 2
caesar 2
did 1
enact 1
hath 1
i 1
i 1
i’ 1
it 2
julius 1
killed 1
killed 1
let 2
me 1
noble 2
so 2
the 1
the 2
told 2
you 2
was 1
was 2
with 2

Boolean Retrieval 45 / 87

Administration Introduction Inverted index Processing Boolean queries Query optimization Course overview

Create postings lists, determine document frequency
..
term docID
ambitious 2
be 2
brutus 1
brutus 2
capitol 1
caesar 1
caesar 2
caesar 2
did 1
enact 1
hath 1
i 1
i 1
i’ 1
it 2
julius 1
killed 1
killed 1
let 2
me 1
noble 2
so 2
the 1
the 2
told 2
you 2
was 1
was 2
with 2

=⇒

term doc. freq. → postings lists

ambitious 1 → 2

be 1 → 2

brutus 2 → 1 → 2

capitol 1 → 1

caesar 2 → 1 → 2

did 1 → 1

enact 1 → 1

hath 1 → 2

i 1 → 1

i’ 1 → 1

it 1 → 2

julius 1 → 1

killed 1 → 1

let 1 → 2

me 1 → 1

noble 1 → 2

so 1 → 2

the 2 → 1 → 2

told 1 → 2

you 1 → 2

was 2 → 1 → 2

with 1 → 2

Boolean Retrieval 46 / 87

Administration Introduction Inverted index Processing Boolean queries Query optimization Course overview

Split the result into dictionary and postings file

Brutus −→ 1 2 4 11 31 45 173 174

Caesar −→ 1 2 4 5 6 16 57 132 . . .

Calpurnia −→ 2 31 54 101

...︸ ︷︷ ︸ ︸ ︷︷ ︸
dictionary postings file

Boolean Retrieval 47 / 87

Administration Introduction Inverted index Processing Boolean queries Query optimization Course overview

Later in this course

Index construction: how can we create inverted indexes for
large collections?

How much space do we need for dictionary and index?

Index compression: how can we efficiently store and process
indexes for large collections?

Ranked retrieval: what does the inverted index look like when
we want the “best” answer?

Boolean Retrieval 48 / 87

Administration Introduction Inverted index Processing Boolean queries Query optimization Course overview

Outline

...1 Administration

...2 Introduction

...3 Inverted index

...4 Processing Boolean queries

...5 Query optimization

...6 Course overview

Boolean Retrieval 49 / 87

Administration Introduction Inverted index Processing Boolean queries Query optimization Course overview

Simple conjunctive query (two terms)

Consider the query: Brutus AND Calpurnia

To find all matching documents using inverted index:
...1 Locate Brutus in the dictionary
...2 Retrieve its postings list from the postings file
...3 Locate Calpurnia in the dictionary
...4 Retrieve its postings list from the postings file
...5 Intersect the two postings lists
...6 Return intersection to user

Boolean Retrieval 50 / 87

Administration Introduction Inverted index Processing Boolean queries Query optimization Course overview

Intersecting two postings lists

Brutus −→ 1 → 2 → 4 → 11 → 31 → 45 → 173 → 174

Calpurnia −→ 2 → 31 → 54 → 101

Intersection =⇒

2 → 31

This is linear in the length of the postings lists.

Note: This only works if postings lists are sorted.

Boolean Retrieval 51 / 87

Administration Introduction Inverted index Processing Boolean queries Query optimization Course overview

Intersecting two postings lists

Brutus −→ 1 → 2 → 4 → 11 → 31 → 45 → 173 → 174

Calpurnia −→ 2 → 31 → 54 → 101

Intersection =⇒

2 → 31

This is linear in the length of the postings lists.

Note: This only works if postings lists are sorted.

Boolean Retrieval 51 / 87

Administration Introduction Inverted index Processing Boolean queries Query optimization Course overview

Intersecting two postings lists

Brutus −→ 1 → 2 → 4 → 11 → 31 → 45 → 173 → 174

Calpurnia −→ 2 → 31 → 54 → 101

Intersection =⇒

2 → 31

This is linear in the length of the postings lists.

Note: This only works if postings lists are sorted.

Boolean Retrieval 51 / 87

Administration Introduction Inverted index Processing Boolean queries Query optimization Course overview

Intersecting two postings lists

Brutus −→ 1 → 2 → 4 → 11 → 31 → 45 → 173 → 174

Calpurnia −→ 2 → 31 → 54 → 101

Intersection =⇒ 2

→ 31

This is linear in the length of the postings lists.

Note: This only works if postings lists are sorted.

Boolean Retrieval 51 / 87

Administration Introduction Inverted index Processing Boolean queries Query optimization Course overview

Intersecting two postings lists

Brutus −→ 1 → 2 → 4 → 11 → 31 → 45 → 173 → 174

Calpurnia −→ 2 → 31 → 54 → 101

Intersection =⇒ 2

→ 31

This is linear in the length of the postings lists.

Note: This only works if postings lists are sorted.

Boolean Retrieval 51 / 87

Administration Introduction Inverted index Processing Boolean queries Query optimization Course overview

Intersecting two postings lists

Brutus −→ 1 → 2 → 4 → 11 → 31 → 45 → 173 → 174

Calpurnia −→ 2 → 31 → 54 → 101

Intersection =⇒ 2

→ 31

This is linear in the length of the postings lists.

Note: This only works if postings lists are sorted.

Boolean Retrieval 51 / 87

Administration Introduction Inverted index Processing Boolean queries Query optimization Course overview

Intersecting two postings lists

Brutus −→ 1 → 2 → 4 → 11 → 31 → 45 → 173 → 174

Calpurnia −→ 2 → 31 → 54 → 101

Intersection =⇒ 2

→ 31

This is linear in the length of the postings lists.

Note: This only works if postings lists are sorted.

Boolean Retrieval 51 / 87

Administration Introduction Inverted index Processing Boolean queries Query optimization Course overview

Intersecting two postings lists

Brutus −→ 1 → 2 → 4 → 11 → 31 → 45 → 173 → 174

Calpurnia −→ 2 → 31 → 54 → 101

Intersection =⇒ 2 → 31

This is linear in the length of the postings lists.

Note: This only works if postings lists are sorted.

Boolean Retrieval 51 / 87

Administration Introduction Inverted index Processing Boolean queries Query optimization Course overview

Intersecting two postings lists

Brutus −→ 1 → 2 → 4 → 11 → 31 → 45 → 173 → 174

Calpurnia −→ 2 → 31 → 54 → 101

Intersection =⇒ 2 → 31

This is linear in the length of the postings lists.

Note: This only works if postings lists are sorted.

Boolean Retrieval 51 / 87

Administration Introduction Inverted index Processing Boolean queries Query optimization Course overview

Intersecting two postings lists

Brutus −→ 1 → 2 → 4 → 11 → 31 → 45 → 173 → 174

Calpurnia −→ 2 → 31 → 54 → 101

Intersection =⇒ 2 → 31

This is linear in the length of the postings lists.

Note: This only works if postings lists are sorted.

Boolean Retrieval 51 / 87

Administration Introduction Inverted index Processing Boolean queries Query optimization Course overview

Intersecting two postings lists

Brutus −→ 1 → 2 → 4 → 11 → 31 → 45 → 173 → 174

Calpurnia −→ 2 → 31 → 54 → 101

Intersection =⇒ 2 → 31

This is linear in the length of the postings lists.

Note: This only works if postings lists are sorted.

Boolean Retrieval 51 / 87

Administration Introduction Inverted index Processing Boolean queries Query optimization Course overview

Intersecting two postings lists

Brutus −→ 1 → 2 → 4 → 11 → 31 → 45 → 173 → 174

Calpurnia −→ 2 → 31 → 54 → 101

Intersection =⇒ 2 → 31

This is linear in the length of the postings lists.

Note: This only works if postings lists are sorted.

Boolean Retrieval 51 / 87

Administration Introduction Inverted index Processing Boolean queries Query optimization Course overview

Intersecting two postings lists

Brutus −→ 1 → 2 → 4 → 11 → 31 → 45 → 173 → 174

Calpurnia −→ 2 → 31 → 54 → 101

Intersection =⇒ 2 → 31

This is linear in the length of the postings lists.

Note: This only works if postings lists are sorted.

Boolean Retrieval 51 / 87

Administration Introduction Inverted index Processing Boolean queries Query optimization Course overview

Intersecting two postings lists

Brutus −→ 1 → 2 → 4 → 11 → 31 → 45 → 173 → 174

Calpurnia −→ 2 → 31 → 54 → 101

Intersection =⇒ 2 → 31

This is linear in the length of the postings lists.

Note: This only works if postings lists are sorted.

Boolean Retrieval 51 / 87

Administration Introduction Inverted index Processing Boolean queries Query optimization Course overview

Intersecting two postings lists

Intersect(p1, p2)
1 answer ← ⟨ ⟩
2 while p1 ̸= nil and p2 ̸= nil
3 do if docID(p1) = docID(p2)
4 then Add(answer , docID(p1))
5 p1 ← next(p1)
6 p2 ← next(p2)
7 else if docID(p1) < docID(p2)
8 then p1 ← next(p1)
9 else p2 ← next(p2)

10 return answer

Boolean Retrieval 52 / 87

Administration Introduction Inverted index Processing Boolean queries Query optimization Course overview

Query processing: Exercise
..

france −→ 1 → 2 → 3 → 4 → 5 → 7 → 8 → 9 → 11 → 12 → 13 → 14 → 15

paris −→ 2 → 6 → 10 → 12 → 14

lear −→ 12 → 15

Compute hit list for ((paris AND NOT france) OR lear)

Boolean Retrieval 53 / 87

Administration Introduction Inverted index Processing Boolean queries Query optimization Course overview

Boolean queries

The Boolean retrieval model can answer any query that is a
Boolean expression.

Boolean queries are queries that use and, or and not to join
query terms.
Views each document as a set of terms.
Is precise: Document matches condition or not.

Primary commercial retrieval tool for 3 decades

Many professional searchers (e.g., lawyers) still like Boolean
queries.

You know exactly what you are getting.

Many search systems you use are also Boolean: spotlight,
email, intranet etc.

Boolean Retrieval 54 / 87

Administration Introduction Inverted index Processing Boolean queries Query optimization Course overview

Commercially successful Boolean retrieval: Westlaw

Largest commercial legal search service in terms of the
number of paying subscribers

Over half a million subscribers performing millions of searches
a day over tens of terabytes of text data

The service was started in 1975.

In 2005, Boolean search (called “Terms and Connectors” by
Westlaw) was still the default, and used by a large percentage
of users . . .

. . . although ranked retrieval has been available since 1992.

Boolean Retrieval 55 / 87

Administration Introduction Inverted index Processing Boolean queries Query optimization Course overview

Westlaw: Example queries

Information need: Information on the legal theories involved in
preventing the disclosure of trade secrets by employees formerly
employed by a competing company

Query: “trade secret” /s disclos! /s prevent /s employe!

Information need: Requirements for disabled people to be able to
access a workplace

Query: disab! /p access! /s work-site work-place (employment /3
place)

Information need: Cases about a host’s responsibility for drunk
guests

Query: host! /p (responsib! liab!) /p (intoxicat! drunk!) /p guest

Boolean Retrieval 56 / 87

Administration Introduction Inverted index Processing Boolean queries Query optimization Course overview

Westlaw: Example queries

Information need: Information on the legal theories involved in
preventing the disclosure of trade secrets by employees formerly
employed by a competing company

Query: “trade secret” /s disclos! /s prevent /s employe!

Information need: Requirements for disabled people to be able to
access a workplace

Query: disab! /p access! /s work-site work-place (employment /3
place)

Information need: Cases about a host’s responsibility for drunk
guests

Query: host! /p (responsib! liab!) /p (intoxicat! drunk!) /p guest

Boolean Retrieval 56 / 87

Administration Introduction Inverted index Processing Boolean queries Query optimization Course overview

Westlaw: Example queries

Information need: Information on the legal theories involved in
preventing the disclosure of trade secrets by employees formerly
employed by a competing company

Query: “trade secret” /s disclos! /s prevent /s employe!

Information need: Requirements for disabled people to be able to
access a workplace

Query: disab! /p access! /s work-site work-place (employment /3
place)

Information need: Cases about a host’s responsibility for drunk
guests

Query: host! /p (responsib! liab!) /p (intoxicat! drunk!) /p guest

Boolean Retrieval 56 / 87

Administration Introduction Inverted index Processing Boolean queries Query optimization Course overview

Westlaw: Comments

Proximity operators: /3 = within 3 words, /s = within a
sentence, /p = within a paragraph

Space is disjunction, not conjunction! (This was the default in
search pre-Google.)

Long, precise queries: incrementally developed, not like web
search

Why professional searchers often like Boolean search:
precision, transparency, control

When are Boolean queries the best way of searching? Depends
on: information need, searcher, document collection, . . .

Boolean Retrieval 57 / 87

Administration Introduction Inverted index Processing Boolean queries Query optimization Course overview

Outline

...1 Administration

...2 Introduction

...3 Inverted index

...4 Processing Boolean queries

...5 Query optimization

...6 Course overview

Boolean Retrieval 58 / 87

Administration Introduction Inverted index Processing Boolean queries Query optimization Course overview

Query optimization

Consider a query that is an and of n terms, n > 2

For each of the terms, get its postings list, then and them
together

Example query: Brutus AND Calpurnia AND Caesar

What is the best order for processing this query?

Boolean Retrieval 59 / 87

Administration Introduction Inverted index Processing Boolean queries Query optimization Course overview

Query optimization

Example query: Brutus AND Calpurnia AND Caesar

Simple and effective optimization: Process in order of
increasing frequency

Start with the shortest postings list, then keep cutting further

In this example, first Caesar, then Calpurnia, then
Brutus

Brutus −→ 1 → 2 → 4 → 11 → 31 → 45 → 173 → 174

Calpurnia −→ 2 → 31 → 54 → 101

Caesar −→ 5 → 31

Boolean Retrieval 60 / 87

Administration Introduction Inverted index Processing Boolean queries Query optimization Course overview

Query optimization

Example query: Brutus AND Calpurnia AND Caesar

Simple and effective optimization: Process in order of
increasing frequency

Start with the shortest postings list, then keep cutting further

In this example, first Caesar, then Calpurnia, then
Brutus

Brutus −→ 1 → 2 → 4 → 11 → 31 → 45 → 173 → 174

Calpurnia −→ 2 → 31 → 54 → 101

Caesar −→ 5 → 31

Boolean Retrieval 60 / 87

Administration Introduction Inverted index Processing Boolean queries Query optimization Course overview

Query optimization

Example query: Brutus AND Calpurnia AND Caesar

Simple and effective optimization: Process in order of
increasing frequency

Start with the shortest postings list, then keep cutting further

In this example, first Caesar, then Calpurnia, then
Brutus

Brutus −→ 1 → 2 → 4 → 11 → 31 → 45 → 173 → 174

Calpurnia −→ 2 → 31 → 54 → 101

Caesar −→ 5 → 31

Boolean Retrieval 60 / 87

Administration Introduction Inverted index Processing Boolean queries Query optimization Course overview

Query optimization

Example query: Brutus AND Calpurnia AND Caesar

Simple and effective optimization: Process in order of
increasing frequency

Start with the shortest postings list, then keep cutting further

In this example, first Caesar, then Calpurnia, then
Brutus

Brutus −→ 1 → 2 → 4 → 11 → 31 → 45 → 173 → 174

Calpurnia −→ 2 → 31 → 54 → 101

Caesar −→ 5 → 31

Boolean Retrieval 60 / 87

Administration Introduction Inverted index Processing Boolean queries Query optimization Course overview

Query optimization

Example query: Brutus AND Calpurnia AND Caesar

Simple and effective optimization: Process in order of
increasing frequency

Start with the shortest postings list, then keep cutting further

In this example, first Caesar, then Calpurnia, then
Brutus

Brutus −→ 1 → 2 → 4 → 11 → 31 → 45 → 173 → 174

Calpurnia −→ 2 → 31 → 54 → 101

Caesar −→ 5 → 31

Boolean Retrieval 60 / 87

Administration Introduction Inverted index Processing Boolean queries Query optimization Course overview

Optimized intersection algorithm for conjunctive queries

Intersect(⟨t1, . . . , tn⟩)
1 terms ← SortByIncreasingFrequency(⟨t1, . . . , tn⟩)
2 result ← postings(first(terms))
3 terms ← rest(terms)
4 while terms ̸= nil and result ̸= nil
5 do result ← Intersect(result, postings(first(terms)))
6 terms ← rest(terms)
7 return result

Boolean Retrieval 61 / 87

Administration Introduction Inverted index Processing Boolean queries Query optimization Course overview

More general optimization

Example query: (madding or crowd) and (ignoble or
strife)

Get frequencies for all terms

Estimate the size of each or by the sum of its frequencies
(conservative)

Process in increasing order of or sizes

Boolean Retrieval 62 / 87

Administration Introduction Inverted index Processing Boolean queries Query optimization Course overview

Outline

...1 Administration

...2 Introduction

...3 Inverted index

...4 Processing Boolean queries

...5 Query optimization

...6 Course overview

Boolean Retrieval 63 / 87

Administration Introduction Inverted index Processing Boolean queries Query optimization Course overview

Course overview

We are done with Chapter 1 of IIR (IIR 01).

Plan for the rest of the semester: 18–20 of the 21 chapters of
IIR

In what follows: teasers for most chapters – to give you a
sense of what will be covered.

Boolean Retrieval 64 / 87

Administration Introduction Inverted index Processing Boolean queries Query optimization Course overview

IIR 02: The term vocabulary and postings lists

Phrase queries: “Stanford University”

Proximity queries: Gates near Microsoft

We need an index that captures position information for
phrase queries and proximity queries.

Boolean Retrieval 65 / 87

Administration Introduction Inverted index Processing Boolean queries Query optimization Course overview

IIR 03: Dictionaries and tolerant retrieval

rd aboard ardent boardroom border

or border lord morbid sordid

bo aboard about boardroom border

- - - -

- - - -

- - - -

Boolean Retrieval 66 / 87

Administration Introduction Inverted index Processing Boolean queries Query optimization Course overview

IIR 04: Index construction

masterassign

map
phase

reduce
phase

assign

parser

splits

parser

parser

inverter

postings

inverter

inverter

a-f

g-p

q-z

a-f g-p q-z

a-f g-p q-z

a-f

segment
files

g-p q-z

Boolean Retrieval 67 / 87

Administration Introduction Inverted index Processing Boolean queries Query optimization Course overview

IIR 05: Index compression

0 1 2 3 4 5 6

0
1

2
3

4
5

6
7

log10 rank

7

lo
g
1
0
 c

f

Zipf’s law

Boolean Retrieval 68 / 87

Administration Introduction Inverted index Processing Boolean queries Query optimization Course overview

IIR 06: Scoring, term weighting and the vector space
model

..

Ranking search results

Boolean queries only give inclusion or exclusion of documents.
For ranked retrieval, we measure the proximity between the query and
each document.
One formalism for doing this: the vector space model

Key challenge in ranked retrieval: evidence accumulation for a term in
a document

1 vs. 0 occurence of a query term in the document
3 vs. 2 occurences of a query term in the document
Usually: more is better
But by how much?
Need a scoring function that translates frequency into score or weight

Boolean Retrieval 69 / 87

Administration Introduction Inverted index Processing Boolean queries Query optimization Course overview

IIR 07: Scoring in a complete search system

Documents

Document
cache

Indexes

k-gram
Scoring

parameters

MLR

training
set

Results
page

Indexers

Parsing
Linguistics

user query

Free text query parser

Spell correction Scoring and ranking

Tiered inverted
positional index

Inexact
top K

retrieval

Metadata in
zone and

field indexes

Boolean Retrieval 70 / 87

Administration Introduction Inverted index Processing Boolean queries Query optimization Course overview

IIR 08: Evaluation and dynamic summaries

Boolean Retrieval 71 / 87

Administration Introduction Inverted index Processing Boolean queries Query optimization Course overview

IIR 09: Relevance feedback & query expansion

Boolean Retrieval 72 / 87

Administration Introduction Inverted index Processing Boolean queries Query optimization Course overview

IIR 11: Probabilistic information retrieval

P(R|d , q) is modeled using term incidence vectors as P(R |⃗x , q⃗)

P(R = 1|⃗x , q⃗) =
P(x⃗ |R = 1, q⃗)P(R = 1|⃗q)

P(x⃗ |⃗q)

P(R = 0|⃗x , q⃗) =
P(x⃗ |R = 0, q⃗)P(R = 0|⃗q)

P(x⃗ |⃗q)

P(x⃗ |R = 1, q⃗) and P(x⃗ |R = 0, q⃗): probability that if a
relevant or nonrelevant document is retrieved, then that
document’s representation is x⃗

Use statistics about the document collection to estimate these
probabilities

Boolean Retrieval 73 / 87

Administration Introduction Inverted index Processing Boolean queries Query optimization Course overview

IIR 12: Language models

q1

w P(w |q1) w P(w |q1)
STOP 0.2 toad 0.01
the 0.2 said 0.03
a 0.1 likes 0.02
frog 0.01 that 0.04

.

This is a one-state probabilistic finite-state automaton – a unigram
language model – and the state emission distribution for its one
state q1.

STOP is not a word, but a special symbol indicating that the
automaton stops.

frog

said

that

toad

likes

frog

STOP

P(string) =

0.01

·0.03

·0.04

·0.01

·0.02

·0.01

·0.2

= 0.0000000000048

Boolean Retrieval 74 / 87

Administration Introduction Inverted index Processing Boolean queries Query optimization Course overview

IIR 12: Language models

q1

w P(w |q1) w P(w |q1)
STOP 0.2 toad 0.01
the 0.2 said 0.03
a 0.1 likes 0.02
frog 0.01 that 0.04

.

This is a one-state probabilistic finite-state automaton – a unigram
language model – and the state emission distribution for its one
state q1.

STOP is not a word, but a special symbol indicating that the
automaton stops.

frog

said

that

toad

likes

frog

STOP

P(string) =

0.01

·0.03

·0.04

·0.01

·0.02

·0.01

·0.2

= 0.0000000000048

Boolean Retrieval 74 / 87

Administration Introduction Inverted index Processing Boolean queries Query optimization Course overview

IIR 12: Language models

q1

w P(w |q1) w P(w |q1)
STOP 0.2 toad 0.01
the 0.2 said 0.03
a 0.1 likes 0.02
frog 0.01 that 0.04

.

This is a one-state probabilistic finite-state automaton – a unigram
language model – and the state emission distribution for its one
state q1.

STOP is not a word, but a special symbol indicating that the
automaton stops.

frog

said

that

toad

likes

frog

STOP

P(string) =

0.01

·0.03

·0.04

·0.01

·0.02

·0.01

·0.2

= 0.0000000000048

Boolean Retrieval 74 / 87

Administration Introduction Inverted index Processing Boolean queries Query optimization Course overview

IIR 12: Language models

q1

w P(w |q1) w P(w |q1)
STOP 0.2 toad 0.01
the 0.2 said 0.03
a 0.1 likes 0.02
frog 0.01 that 0.04

.

This is a one-state probabilistic finite-state automaton – a unigram
language model – and the state emission distribution for its one
state q1.

STOP is not a word, but a special symbol indicating that the
automaton stops.

frog

said

that

toad

likes

frog

STOP

P(string) = 0.01

·0.03

·0.04

·0.01

·0.02

·0.01

·0.2

= 0.0000000000048

Boolean Retrieval 74 / 87

Administration Introduction Inverted index Processing Boolean queries Query optimization Course overview

IIR 12: Language models

q1

w P(w |q1) w P(w |q1)
STOP 0.2 toad 0.01
the 0.2 said 0.03
a 0.1 likes 0.02
frog 0.01 that 0.04

.

This is a one-state probabilistic finite-state automaton – a unigram
language model – and the state emission distribution for its one
state q1.

STOP is not a word, but a special symbol indicating that the
automaton stops.

frog said

that

toad

likes

frog

STOP

P(string) = 0.01

·0.03

·0.04

·0.01

·0.02

·0.01

·0.2

= 0.0000000000048

Boolean Retrieval 74 / 87

Administration Introduction Inverted index Processing Boolean queries Query optimization Course overview

IIR 12: Language models

q1

w P(w |q1) w P(w |q1)
STOP 0.2 toad 0.01
the 0.2 said 0.03
a 0.1 likes 0.02
frog 0.01 that 0.04

.

This is a one-state probabilistic finite-state automaton – a unigram
language model – and the state emission distribution for its one
state q1.

STOP is not a word, but a special symbol indicating that the
automaton stops.

frog said

that

toad

likes

frog

STOP

P(string) = 0.01 ·0.03

·0.04

·0.01

·0.02

·0.01

·0.2

= 0.0000000000048

Boolean Retrieval 74 / 87

Administration Introduction Inverted index Processing Boolean queries Query optimization Course overview

IIR 12: Language models

q1

w P(w |q1) w P(w |q1)
STOP 0.2 toad 0.01
the 0.2 said 0.03
a 0.1 likes 0.02
frog 0.01 that 0.04

.

This is a one-state probabilistic finite-state automaton – a unigram
language model – and the state emission distribution for its one
state q1.

STOP is not a word, but a special symbol indicating that the
automaton stops.

frog said that

toad

likes

frog

STOP

P(string) = 0.01 ·0.03

·0.04

·0.01

·0.02

·0.01

·0.2

= 0.0000000000048

Boolean Retrieval 74 / 87

Administration Introduction Inverted index Processing Boolean queries Query optimization Course overview

IIR 12: Language models

q1

w P(w |q1) w P(w |q1)
STOP 0.2 toad 0.01
the 0.2 said 0.03
a 0.1 likes 0.02
frog 0.01 that 0.04

.

This is a one-state probabilistic finite-state automaton – a unigram
language model – and the state emission distribution for its one
state q1.

STOP is not a word, but a special symbol indicating that the
automaton stops.

frog said that

toad

likes

frog

STOP

P(string) = 0.01 ·0.03 ·0.04

·0.01

·0.02

·0.01

·0.2

= 0.0000000000048

Boolean Retrieval 74 / 87

Administration Introduction Inverted index Processing Boolean queries Query optimization Course overview

IIR 12: Language models

q1

w P(w |q1) w P(w |q1)
STOP 0.2 toad 0.01
the 0.2 said 0.03
a 0.1 likes 0.02
frog 0.01 that 0.04

.

This is a one-state probabilistic finite-state automaton – a unigram
language model – and the state emission distribution for its one
state q1.

STOP is not a word, but a special symbol indicating that the
automaton stops.

frog said that toad

likes

frog

STOP

P(string) = 0.01 ·0.03 ·0.04

·0.01

·0.02

·0.01

·0.2

= 0.0000000000048

Boolean Retrieval 74 / 87

Administration Introduction Inverted index Processing Boolean queries Query optimization Course overview

IIR 12: Language models

q1

w P(w |q1) w P(w |q1)
STOP 0.2 toad 0.01
the 0.2 said 0.03
a 0.1 likes 0.02
frog 0.01 that 0.04

.

This is a one-state probabilistic finite-state automaton – a unigram
language model – and the state emission distribution for its one
state q1.

STOP is not a word, but a special symbol indicating that the
automaton stops.

frog said that toad

likes

frog

STOP

P(string) = 0.01 ·0.03 ·0.04 ·0.01

·0.02

·0.01

·0.2

= 0.0000000000048

Boolean Retrieval 74 / 87

Administration Introduction Inverted index Processing Boolean queries Query optimization Course overview

IIR 12: Language models

q1

w P(w |q1) w P(w |q1)
STOP 0.2 toad 0.01
the 0.2 said 0.03
a 0.1 likes 0.02
frog 0.01 that 0.04

.

This is a one-state probabilistic finite-state automaton – a unigram
language model – and the state emission distribution for its one
state q1.

STOP is not a word, but a special symbol indicating that the
automaton stops.

frog said that toad likes

frog

STOP

P(string) = 0.01 ·0.03 ·0.04 ·0.01

·0.02

·0.01

·0.2

= 0.0000000000048

Boolean Retrieval 74 / 87

Administration Introduction Inverted index Processing Boolean queries Query optimization Course overview

IIR 12: Language models

q1

w P(w |q1) w P(w |q1)
STOP 0.2 toad 0.01
the 0.2 said 0.03
a 0.1 likes 0.02
frog 0.01 that 0.04

.

This is a one-state probabilistic finite-state automaton – a unigram
language model – and the state emission distribution for its one
state q1.

STOP is not a word, but a special symbol indicating that the
automaton stops.

frog said that toad likes

frog

STOP

P(string) = 0.01 ·0.03 ·0.04 ·0.01 ·0.02

·0.01

·0.2

= 0.0000000000048

Boolean Retrieval 74 / 87

Administration Introduction Inverted index Processing Boolean queries Query optimization Course overview

IIR 12: Language models

q1

w P(w |q1) w P(w |q1)
STOP 0.2 toad 0.01
the 0.2 said 0.03
a 0.1 likes 0.02
frog 0.01 that 0.04

.

This is a one-state probabilistic finite-state automaton – a unigram
language model – and the state emission distribution for its one
state q1.

STOP is not a word, but a special symbol indicating that the
automaton stops.

frog said that toad likes frog

STOP

P(string) = 0.01 ·0.03 ·0.04 ·0.01 ·0.02

·0.01

·0.2

= 0.0000000000048

Boolean Retrieval 74 / 87

Administration Introduction Inverted index Processing Boolean queries Query optimization Course overview

IIR 12: Language models

q1

w P(w |q1) w P(w |q1)
STOP 0.2 toad 0.01
the 0.2 said 0.03
a 0.1 likes 0.02
frog 0.01 that 0.04

.

This is a one-state probabilistic finite-state automaton – a unigram
language model – and the state emission distribution for its one
state q1.

STOP is not a word, but a special symbol indicating that the
automaton stops.

frog said that toad likes frog

STOP

P(string) = 0.01 ·0.03 ·0.04 ·0.01 ·0.02 ·0.01

·0.2

= 0.0000000000048

Boolean Retrieval 74 / 87

Administration Introduction Inverted index Processing Boolean queries Query optimization Course overview

IIR 12: Language models

q1

w P(w |q1) w P(w |q1)
STOP 0.2 toad 0.01
the 0.2 said 0.03
a 0.1 likes 0.02
frog 0.01 that 0.04

.

This is a one-state probabilistic finite-state automaton – a unigram
language model – and the state emission distribution for its one
state q1.

STOP is not a word, but a special symbol indicating that the
automaton stops.

frog said that toad likes frog STOP

P(string) = 0.01 ·0.03 ·0.04 ·0.01 ·0.02 ·0.01

·0.2

= 0.0000000000048

Boolean Retrieval 74 / 87

Administration Introduction Inverted index Processing Boolean queries Query optimization Course overview

IIR 12: Language models

q1

w P(w |q1) w P(w |q1)
STOP 0.2 toad 0.01
the 0.2 said 0.03
a 0.1 likes 0.02
frog 0.01 that 0.04

.

This is a one-state probabilistic finite-state automaton – a unigram
language model – and the state emission distribution for its one
state q1.

STOP is not a word, but a special symbol indicating that the
automaton stops.

frog said that toad likes frog STOP

P(string) = 0.01 ·0.03 ·0.04 ·0.01 ·0.02 ·0.01 ·0.2

= 0.0000000000048

Boolean Retrieval 74 / 87

Administration Introduction Inverted index Processing Boolean queries Query optimization Course overview

IIR 12: Language models

q1

w P(w |q1) w P(w |q1)
STOP 0.2 toad 0.01
the 0.2 said 0.03
a 0.1 likes 0.02
frog 0.01 that 0.04

.

This is a one-state probabilistic finite-state automaton – a unigram
language model – and the state emission distribution for its one
state q1.

STOP is not a word, but a special symbol indicating that the
automaton stops.

frog said that toad likes frog STOP

P(string) = 0.01 ·0.03 ·0.04 ·0.01 ·0.02 ·0.01 ·0.2
= 0.0000000000048

Boolean Retrieval 74 / 87

Administration Introduction Inverted index Processing Boolean queries Query optimization Course overview

IIR 13: Text classification & Naive Bayes

Text classification = assigning documents automatically to
predefined classes

Examples:

Language (English vs. French)
Adult content
Region

Boolean Retrieval 75 / 87

Administration Introduction Inverted index Processing Boolean queries Query optimization Course overview

IIR 14: Vector classification

X

X

X
X

X

X

X

X

X

X

X

∗

Boolean Retrieval 76 / 87

Administration Introduction Inverted index Processing Boolean queries Query optimization Course overview

IIR 15: Support vector machines (possibly skipped)

Boolean Retrieval 77 / 87

Administration Introduction Inverted index Processing Boolean queries Query optimization Course overview

IIR 16: Flat clustering

Boolean Retrieval 78 / 87

Administration Introduction Inverted index Processing Boolean queries Query optimization Course overview

IIR 17: Hierarchical clustering

http://news.google.com

Boolean Retrieval 79 / 87

Administration Introduction Inverted index Processing Boolean queries Query optimization Course overview

IIR 18: Latent Semantic Indexing

Boolean Retrieval 80 / 87

Administration Introduction Inverted index Processing Boolean queries Query optimization Course overview

IIR 19: The web and its challenges

Unusual and diverse documents

Unusual and diverse users and information needs

Beyond terms and text: exploit link analysis, user data

How do web search engines work?

How can we make them better?

Boolean Retrieval 81 / 87

Administration Introduction Inverted index Processing Boolean queries Query optimization Course overview

IIR 20: Crawling

www

Fetch

DNS

Parse

URL Frontier

Content
Seen?

�
�

�
���

Doc
FP’s �

�
�
���

URL
set

URL
Filter

Host
splitter

To
other
nodes

From
other
nodes

Dup
URL
Elim-

�

-

6

�-

?
6

- - - -

�

6? 6?666

Boolean Retrieval 82 / 87

Administration Introduction Inverted index Processing Boolean queries Query optimization Course overview

IIR 21: Link analysis / PageRank

Boolean Retrieval 83 / 87

Administration Introduction Inverted index Processing Boolean queries Query optimization Course overview

If time permits:
Evolution of the Google IR System

Boolean Retrieval 84 / 87

Administration Introduction Inverted index Processing Boolean queries Query optimization Course overview

If time permits:
Building Watson: An Overview of the DeepQA Project

Boolean Retrieval 85 / 87

Administration Introduction Inverted index Processing Boolean queries Query optimization Course overview

If time permits:
Introduction to computational advertising

Boolean Retrieval 86 / 87

Administration Introduction Inverted index Processing Boolean queries Query optimization Course overview

Take-away

Why you should take this course

Admin issues

Boolean Retrieval: Design and data structures of a simple
information retrieval system

What topics will be covered in this class?

Boolean Retrieval 87 / 87

	Administration
	Introduction
	Inverted index
	Processing Boolean queries
	Query optimization
	Course overview

