
Performance Analysis of a
Distributed Question/Answering System

Mihai Surdeanu, Dan I. Moldovan, and Sanda M. Harabagiu
Language Computer Corporation

and
Department of Computer Science

University of Texas at Dallas
mihai@languagecomputer.com�
moldovan, sanda � @utdallas.edu

Abstract

The problem of question/answering (Q/A) is to find answers to open-domain questions by search-

ing large collections of documents. Unlike information retrieval systems, very common today in

the form of Internet search engines, Q/A systems do not retrieve documents, but instead provide

short, relevant answers located in small fragments of text. This enhanced functionality comes with

a price: Q/A systems are significantly slower and require more hardware resources than informa-

tion retrieval systems. This paper proposes a distributed Q/A architecture that: enhances the sys-

tem throughput through the exploitation of inter-question parallelism and dynamic load balancing,

and reduces the individual question response time through the exploitation of intra-question par-

allelism. Inter and intra-question parallelism are both exploited using several scheduling points:

one before the Q/A task is started, and two embedded in the Q/A task.

An analytical performance model is introduced. The model analyzes both the inter-question

parallelism overhead generated by the migration of questions, and the intra-question parallelism

overhead generated by the partitioning of the Q/A task. The analytical model indicates that both

question migration and partitioning are required for a high-performance system: intra-question

parallelism leads to significant speedup of individual questions, but it is practical up to about

90 processors, depending on the system parameters. The exploitation of inter-task parallelism

Q.8 What is the name of the rare neurological disease with symptoms such as : involuntary
movements (tics), swearing, and incoherent vocalizations (grunts, shouts, etc)?

Answer ... who said she has both Tourette’s Syndrome and...
(short)

Q.34 Where is the actress Marion Davies buried?
Answer ... from the fountain inside Hollywood Cemetery...
(short)

Q.73 Where is the Taj Mahal ?
Answer ... list of more than 360 cities throughout the world includes the Great
(long) Reef in Australia, the Taj Mahal in India, Chartre’s Cathedral in France, and

Serengeti National Park in Tanzania. The four sites Japan has listed include...

Q.176 What is the nationality of Pope John Paul II ?
Answer ... stabilize the country with its help, the Catholic hierarchy stoutly held out
(long) for pluralism, in large part at the urging of Polish-born Pope John Paul II. When the

Pope emphatically defended the Solidarity trade union during a 1987 tour of the...

Table 1. Examples of answers returned by FALCON. The answers are in bold within 50 or 250
bytes of text.

provides a scalable way to improve the system throughput.

The distributed Q/A system has been implemented on a network of sixteen Pentium III com-

puters. The experimental results indicate that, at high system load, the dynamic load balancing

strategy proposed in this paper outperforms two other traditional approaches. At low system load,

the distributed Q/A system reduces question response times through task partitioning, with factors

close to the ones indicated by the analytical model.

Keywords: distributed question answering, load balancing, migration, partitioning

1 Introduction

1.1 Problem of Question/Answering

The task of a question/answering (Q/A) system is to find an answer to a question by searching a

collection of documents and returning only the small fragment of text where the answer is located.

Table 1 presents output examples of the Falcon Q/A system developed at SMU [16]. The length

of the answer text is either 50 bytes (for short answers) or 250 bytes (for long answers). Both

the questions and the answer format in Table 1 are from the Text REtrieval Conference (TREC)

competition, the de facto standard in Q/A system evaluation [34]. Q/A systems can be extended to

handle various problems, but currently their main applicability is to find answers to factual ques-

tions, whose answer fits in a small portion of text. The first two editions of the TREC competition

2

(1999 and 2000) focused on such questions, some of which are exemplified in Table 1. The answers

shown in Table 1 all center around entities that can be determined from the question semantics. For

example, the answer to the first question is centered around a DISEASE entity, the answers to the

next two questions center around LOCATION entities, and the answer to the last question focuses

on NATIONALITY entities.

The example previously presented certainly minimizes the complexity of a question answering

system, but its simplicity highlights the main concepts used in a Q/A architecture: a Q/A task starts

with the processing of the natural language question. The purpose of this subtask is two fold. The

first goal is to extract semantic information used in the identification of the answer. An example of

semantic information is the type of the answer entities previously introduced. The second goal is

to select the keywords for document retrieval. Document retrieval based on the selected keywords

is the second subtask of a Q/A system. Finally, the answer extraction subtask identifies the answer

within the documents retrieved, by matching the semantic information retrieved from the question

with the document contents. This novel concept of answer extraction from documents makes Q/A

systems the ideal solution for many real-world applications, such as search engines or automated

customer support.

1.2 Motivation

The work presented in this paper builds upon the previous work in question answering systems

performed at Southern Methodist University [27, 26, 16]. At the only two editions of the TREC

competition that had a Q/A track (TREC-8 in 1999 and TREC-9 in 2000), the Q/A systems de-

veloped at SMU were ranked first. The distributed Q/A system introduced in this paper modifies

Falcon, the most recent Q/A system developed at SMU. At the TREC-9 competition Falcon pro-

vided correct short answers to 66.4% of the questions and correct long answers to 86.1% of the

questions, more than any other of the 78 systems in the competition. Nevertheless, the focus of the

TREC competitions (and implicitly of the Falcon architecture) was on qualitative results, not on

the quantitative system performance. This paper addresses the quantitative performance issues of

Q/A systems and is motivated by the following observations:

� Sequential question answering systems, and in particular Falcon, are not good candidates

for large-scale Q/A systems. In the TREC-9 competition, for a 3 GB document collection,

3

the average question is answered by Falcon in 94 seconds. The average task requires over

20 MB of dynamic memory for internal data. Over four simultaneous questions cause disk

overload yielding significant slow down. These observations indicate that the throughput of

a sequential question answering system is quite limited. The only solution to increase the

throughput of a Q/A system is a distributed architecture where inter-question parallelism is

exploited by allocating questions on all processors part of the system.

� Typical distributed approaches that exploit only the inter-task parallelism are not sufficient.

Interactive Q/A systems require that the individual question answering time be significantly

reduced. Hence more complex designs that offer both inter-task and intra-task parallelism

are needed for this problem.

1.3 Approach

The novel issues addressed in this paper are the following: (i) A distributed architecture for ques-

tion/answering, which is a fast growing area of research and commercial interest, is introduced. (ii)

The architecture presented exploits both inter and intra task parallelism which improves both the

overall system throughput and the individual question response time. (iii) The distributed Q/A

system uses a dynamic load balancing model which outperforms traditional runtime scheduling

techniques. (iv) The distributed Q/A architecture is analytically modeled and results are presented

for large number of processors.

1.4 Related Work

The distributed question/answering problem addresses two distributed processing issues: dy-

namic scheduling and load balancing and distributed information retrieval.

Several distributed load balancing models were proposed in the literature: the gradient model [23,

25, 28], sender or receiver-initiated diffusion [35, 31, 4], the hierarchical balancing model [35],

and others. Practical implementations of such models vary based on the resources considered for

scheduling: CPU [10, 12, 18, 20, 22], memory [1, 33, 37, 36], or combinations of I/O, CPU and

memory [3, 2, 11]. Of particular interest for us are load balancing systems used for distributed

Internet services. Attempts were made to improve the performance of by now ubiquitous search

engines and digital library interfaces [3, 2] using distributed processing techniques, in order to

4

sustain very high loads.

We exploit the inter-task parallelism in a manner roughly similar with the SWEB project [3, 2],

but we enhance their model with more scheduling points and intra-task parallelism. On the other

hand, the exploitation of intra-task parallelism in the distributed Q/A system is roughly similar to

the Piranha project [10]. The novelty of our approach is the seamless integration of both inter and

intra task parallelism and its application to question answering.

Distributed information retrieval systems have recently received enhanced attention due to the

Internet informational explosion. Hundred of gigabyte collections of documents are now common,

making indexing and retrieval impractical on a single computer. The Text Retrieval Conference

(TREC) [29] has now a separate section for collections exceeding 100 GB [19]. The experience

gained from the TREC very large collection track fostered further research in the field of dis-

tributed information retrieval [6, 7]. An interesting result obtained in [7] is a query time evaluation

heuristic based on the number of query terms and their frequencies in the given collection. Such

information could be used by the load balancing mechanism, but unfortunately it does not apply to

question/answering. As indicated in Section 2, the additional modules required by a Q/A system

dominate the execution time.

1.5 Overview

Section 2 performs an analysis of the sequential Q/A system. Section 3 presents the architecture

of the distributed Q/A system. Section 4 presents the most relevant issues related to the imple-

mentation of the inter and intra-question parallelism. Section 5 introduces an analytical model

of the proposed distributed Q/A architecture. Section 6 presents empirical test results. Section 7

concludes the paper.

2 Analysis of the Sequential Q/A Architecture

We start with a parallelism analysis of the Falcon Q/A system. The goals of this analysis are: (i)

to identify all the levels of parallelism available in a Q/A system, and (ii) to locate the performance

bottlenecks in the sequential Q/A design.

5

Paragraph
Ordering

Paragraph
Scoring

Paragraph
Retrieval

Accepted

ParagraphsParagraphsParagraphs

Answer
Processing

Answer(s)

Question

Keywords

Question Processing

Figure 1. Sequential Q/A Architecture

2.1 Architecture Overview

Figure 1 shows the architecture of the Falcon Q/A system. The presentation is at the block

diagram level to emphasize generality. While the focus of this paper is not on the sequential Q/A

architecture, for completeness we describe shortly each module part of the Q/A task.

The main role of the Question Processing (QP) module if to identify the answer type expected

(i.e. LOCATION, PERSON, etc.) and to translate the user question into a set of keywords to be used

in the next processing stages. The Paragraph Retrieval (PR) uses a Boolean Information Retrieval

(IR) system to identify and extract the documents that contain the previously identified keywords

and an additional post-processing phase to extract paragraphs from documents. Falcon currently

uses a Boolean IR system, hence documents and paragraphs are not ranked after the PR phase.

Even if documents were ranked by the IR system, the next two stages in the Q/A architecture are

necessary, because the extracted paragraphs may have different relevance than their parent docu-

ments. The Paragraph Scoring (PS) module assign a rank to each paragraph provided by the PR

module using three surface-text heuristics. The heuristics estimate the relevance of each paragraph

based on the number of keywords present in the paragraph and the inter-keyword distance [27].

The Paragraph Ordering (PO) module sorts the paragraphs in descending rank order. In order to

improve response time, only the paragraphs with a rank over a certain threshold are passed to the

next stage. The task of the Answer Processing (AP) module is to extract and rank answers from the

6

paragraphs fed by the PO module. Answer processing starts with the identification of candidate

answers within paragraphs. Candidate answers are lexico-semantic entities with the same type as

the question answer type. Around the candidate answers the system builds answer windows, which

are text spans that include the candidate answer and one of each of the question keywords. Each

window is assigned a score which is a combination of seven heuristics [27]. The heuristics used

by the AP module use similar frequency and distance metrics as the PS heuristics. The difference

is that the AP heuristics require the presence of a candidate answer. The windows are then sorted

in descending order of their score. Further design and implementation details of the sequential

Falcon Q/A system are available in [16, 26].

2.2 Timing Analysis

The complexity of the Q/A system is reflected in the question processing times. We measured

the average question answering time using two versions of the Falcon Q/A system, developed

for the TREC-8 and TREC-9 competitions. Falcon’s average question answering time was 48

seconds on the TREC-8 collection and 94 seconds on the TREC-9 collection, at least an order of

magnitude larger than a typical IR engine. The Table 2 analysis of the Q/A modules indicates

that the bottlenecks of the Q/A system are the paragraph retrieval (PR) and the answer processing

(AP) modules. The overhead of the bottleneck modules becomes more significant in the TREC-9

competition: the PR time increases with the collection size (an average of 21 seconds per question

for the 2 GB TREC-8 collection versus an average of 24 seconds for the 3 GB TREC-9 collection).

The larger number of paragraphs and the different module design increased the complexity of the

AP module from an average of 23 seconds per question in TREC-8 to 65 seconds per question in

TREC-9. In both tests, the advanced natural language processing techniques used in the AP module

(i.e. named-entity recognition for the detection of candidate answers and syntactic parsing for the

construction of answer semantic representations) are considerably more computational expensive

than the light-weight techniques used in the paragraph scoring module.

The last column of Table 2 indicates that three Falcon modules (PR, PS, and AP) are iterative

with various granularities: document collection for PR, and text paragraph for PS and AP. For

our experiments we used a logical separation of the TREC-9 document collection into eight sub-

collections, but arbitrarily small sub-collections can be built. The results presented in Table 2 lead

7

TREC-8 TREC-9
Module % of Task Time % of Task Time Iterative Task? Granularity

QP 1.1 % 1.2 % No
PR 44.4 % 26.5 % Yes Collection
PS 5.4 % 2.2 % Yes Paragraph
PO 0.1 % 0.1 % No
AP 48.7 % 69.7 % Yes Paragraph

Table 2. Analysis of Q/A modules

us to the following observations:

� A distributed Q/A system with specialized scheduling points before the computation-intensive

modules (PR and AP) should achieve efficient load balancing. For the Q/A architecture, the

requirements of the bottleneck modules are precisely identified: the PR module extensively

uses the disk with minimal CPU load, while the reverse is true for the AP module. Based

on this information one can design simple and effective load balancing heuristics specialized

for each bottleneck module.

� Having independent scheduling points for each of the bottlenecks is feasible because the

inter-module communication is minimal. The PR module takes as input the current set of

keywords and produces a set of paragraphs. The set of documents produced by the internal

information retrieval system (typically very large) is not visible outside of the module. A re-

duced set of paragraphs is input to the AP module which returns a set of answers considered

correct.

� Another advantage of having separate scheduling points for the bottleneck modules is that

each bottleneck module can be distributed between multiple processors. Task partitioning is

possible because, as Table 2 shows, all bottlenecks are iterative tasks. Using partitioning, or

intra-task parallelism, the response time for individual questions can be improved, which is

not possible for a system that only takes advantage of the inter-question parallelism.

These observations indicate that a distributed Q/A system that combines inter-question with

intra-question parallelism will achieve not only best overall throughput but also best individual

question response times. The design presented in the next section follows this idea. The results

shown in Section 6 prove that our intuition was correct.

8

Load
Monitor

Q/A Module

Load
Monitor

Q/A Module

���
���
���
���
���
���
���
���
���
���
���
���

���
���
���
���
���
���
���
���
���
���
���
���

Internet/DNS

���
���
���

���
���
���

Local Interconnection Network

Question Question
Dispatcher Dispatcher

Node NNode 1

Questions Questions

...

Figure 2. High Level Distributed Q/A Architecture

3 Distributed Question Answering Architecture

Based on the analysis presented in the previous section, the design of the distributed Q/A system

can be presented in two stages: a high-level design that illustrates inter-question parallelism and

a low-level design that emphasizes intra-question parallelism. The goals when designing the dis-

tributed Q/A system were: (i) performance: the system should improve overall throughput through

dynamic load balancing and should minimize question response times through the exploitation of

intra-question parallelism; (ii) scalability: the design should avoid hot points and single points of

failure; and (iii) flexibility: processors must be able to dynamically join or leave the system pool.

3.1 Inter-Question Parallelism

A high-level view of the distributed Q/A system architecture is presented in Figure 2. The inter-

question parallelism is exploited through distributed scheduling. The Q/A system is designed as

an Internet service. Hence we assume that an initial distribution of questions among processors is

already performed by the Domain Name Service (DNS). Using the one-to-many name to IP address

mapping, requests are mapped to system processors in a round-robin manner [5]. In practice, load

9

balancing using this strategy is far from perfect because DNS does not consider the system load

information when doing the request redirection. Furthermore, even the round-robin assumption is

not always true: due to DNS address caching, requests from the same net are directed to the same

IP address for the lifetime of the cache. The question dispatcher performs additional rescheduling

to compensate for the DNS limitations. If the DNS-allocated node is over-loaded, the dispatcher

migrates the Q/A task to another node. The question dispatcher migration is performed before the

task is started. In the next subsection, we describe two other dispatching points (before paragraph

retrieval and before answer processing), which are capable of migrating a Q/A task during its

execution. The dispatcher’s strategy is to select the processor with the smallest average load for

the Q/A task. To avoid useless migrations, a question is migrated only if the difference between the

load of the source node and the load of the destination node is greater than the average workload

of a single question. For every processor
�
, the Q/A task average load is defined as the weighted

average of the required resource loads:

���������
	���
�� � ��������� �����������! �"��� �#����� ���$ �" � �%�'&(�*),+.-�/� �������),+.- � �%� (1)

The resource weights indicate how significant the corresponding resource is for the Q/A task. In

practice, the resource weights are equal with the percentage of the execution time the Q/A task

spends accessing the corresponding resource. The measurement strategy for the resource weights

and their values for our test platform are presented in Section 4.

The distributed load management is implemented by the set of load monitoring processes. Peri-

odically each load monitor updates its local CPU and disk load and broadcasts the information on

the local interconnection network. Thus every processor is aware not only of its own load but of

the load of every other active processor in the system. This broadcast mechanism is also used to

keep track of the current system configuration: if load information is not received from a processor

in a predefined time, that processor is removed from the system pool. A processor automatically

joins the pool when it starts broadcasting load information on the local network.

3.2 Intra-Question Parallelism

Figure 2 shows each question answering task being handled by a Q/A module. Figure 3 expands

the internal architecture of the Q/A module. The design is based on the Q/A architecture presented

10

Answer(s)

Paragraphs Paragraphs

Accepted

Ordering
Paragraph

Question Processing
Keywords

Question

Scoring (k)

Paragraphs

Paragraph

Paragraph

Paragraph

Scoring (1)

Scoring (2)

Answer

Processing (2)

Answer
Sorting

Answer

Processing (1)
Answer

Subset (n)
Paragraph

Paragraph
Retrieval (1)

Subset (2)

Paragraph
Retrieval (2)

Paragraph

Paragraph
Retrieval (k)

Subset (1)

Paragraph
Merging

Answer

Paragraph

Processing

Monitor

Dispatcher

Load

Monitor

...

...

Answers (1)

Answers (2)

Answers (n)

Load

Unranked
Answers

Merging
Answer

Paragraph
Retrieval
Dispatcher

Paragraphs (1)

Paragraphs (2)

Paragraphs (k)

Processing (n)

Figure 3. Low Level Distributed Q/A Architecture

in Figure 1, extended along the guidelines established in the first part of this section: bottlenecks

are divided into lower granularity subtasks which are scheduled with heuristics specialized for

each subtask. With this architecture we aim to provide better overall load balancing and improve

the individual question answering time. Several modules were added to the design from Figure 1:

scheduling points before the PR and AP modules, input splitting and output merging/sorting where

necessary. The new modules are detailed next.

Specialized dispatchers were added before the PR and AP modules. Both dispatchers use the

meta-scheduling algorithm presented in Figure 4. The meta-scheduling algorithm attempts to di-

11

metaScheduler(task, loadFunction, underloadCondition)
1. select all processors

�
with

	������������������
����� � � � � � � �%�
true

2. if none selected then
select processor

�
with the smallest value for

����� ��� 	���
 � � � � � ���

3. assign to each selected processor
�

an unnormalized weight:
	��	� ��

������������ ��������� 	.��
�� � ��� � �������������� 	.��
�� � ��� � ��� , where
���������! � ������� � 	���
 � � � � � �%��� is the largest value

observed for the load function in the selected processor set
4. assign to each selected processor

�
a normalized weight�	� � 	�� �" �# ��� 	�� # , where

�
is the number of selected processors

5. assign to each selected processor
�

a fraction
�$�

of the global task

Figure 4. Meta Scheduling Algorithm

vide a given task into smaller granularity sub-tasks and distribute them on the processors best fit

for the task. The meta-scheduling algorithm has three parameters: the task to distribute, the load

function, defined on each processor as a quantification of unavailable task-specific resources, and

the under-load condition for the given module. The goal of the meta-scheduling algorithm is to

automatically determine the degree of intra-parallelism available in the current system state. This

is the justification for the first algorithm step, which attempts to select all under-loaded processors.

If under-loaded processors are available in the system, intra-question parallelism can be exploited

because there are distributed resources not used to their full potential. If there are no under-loaded

processors, there is no reason to force intra-question parallelism. In such a case, the second step

of the algorithm selects a single processor, which has the most available resources for the desired

task. The third and fourth algorithm steps assign to each processor a weight according to the per-

centage of available resources on this processor. The task to be dispatched is then partitioned and

allocated on all processors selected according to their normalized weights. Section 4.1 introduces

three partitioning strategies tailored for the PR and AP modules.

The meta-scheduler is specialized for the PR and AP modules with different load functions and

under-load conditions. For every processor
�

the load functions for the PR and AP sub-task are

defined as:

�#�������
	���
 � � � � +�% � �����������! �"+�% �#����� ���$ �" � �%�'&(�*),+.-+�% �������),+.- � �%� (2)

�#�������
	���
 � � � ��� + � ��� � �����! �"� + ������� ���! �" � �%� &(��),+.-� + �������),+.- � �%� (3)

12

Similarly with the resource weights for the whole Q/A task, the weights for the PR and AP load

functions are empirically determined by examining the average percentage of the module execution

time spent accessing the corresponding resource. The procedure used to measure the resource

weights and their values for out test platform are presented in Section 4. The measured weight

values indicate that the most significant resource for PR module is the disk (on our test platform

80% of the paragraph retrieval time is spent on I/O accesses), and the most significant resource for

the AP module is the CPU (virtually 100% of the answer extraction time is spent in non-idle CPU

cycles). In the same section we present the implementation of the under-load condition for both the

PR and AP modules. The intuition behind this approach is that each dispatcher should select the

processors with the highest availability for the resources used most extensively by the dispatched

task (disk for PR and CPU for AP). The results presented in Section 6 validate our approach.

Due to the partitioning of the PR and AP tasks, three new modules are introduced: paragraph

merging, which collects the paragraphs output by the paragraph scoring modules, answer merging,

which collects the answers extracted by the answer processing modules, and answer sorting, which

sorts the local best answers obtaining a global order. The centralized paragraph merging and

ordering are justified by the filter at the end of the paragraph ordering module, which accepts

only paragraphs ranked over a predefined threshold. Because one of our goals was to mimic the

execution of the sequential system, the ranking and filtering of paragraphs had to be centralized in

order to obtain the same paragraphs at the output of the PO module as the sequential system.

4 Implementation

This section presents implementation issues which were not covered by the conceptual model

presented in Section 3, but are nevertheless important parts of the proposed distributed Q/A ar-

chitecture. The following issues are addresses: (i) implementation of the paragraph retrieval and

answer processing partitioning strategies; and (ii) measurement methodology for the empirical

parameters used by the scheduling heuristics.

4.1 Implementation of Intra-Question Parallelism

This subsection describes the implementation of the intra-question parallelism model introduced

in Section 3. More exactly, we describe practical solutions for the implementation of Step 5 of the

13

meta-scheduling algorithm presented in Figure 4. This part of the meta-scheduling algorithm par-

titions the given module (PR, PS, or AP) on the processors selected in the previous steps. This task

raises two practical problems: first, the module input must be partitioned such that the granularities

of the generated partitions are as close as possible to the processor weights reported by the load

balancing module, and second, the allocation algorithm must implement a recovery strategy from

node failures.

This section introduces three possible partitioning algorithms, classified in two classes: sender-

controlled algorithms and receiver-controlled algorithms. All algorithms make the assumption that

the input task is iterative. As Section 2 indicates, this assumption is true for the PR, PS, and

AP modules. For simplicity, throughout the paper we use the term item to identify the smallest

granularity of the input data (collection or paragraph), the term sub-task to identify the processing

associated with one item, and sub-task granularity to indicate the sub-task resource requirements

(CPU and/or IO).

4.1.1 Sender-Controlled Partitioning Algorithms

The first algorithm presented makes the assumption that the sub-task granularity does not vary

widely among items. The input data is divided into successive partitions with sizes computed

according to the selected processor weights. Each partition is then migrated to the corresponding

processor. This partitioning strategy is illustrated in Figure 5 (a). We named this partitioning

algorithm SEND, because it is a straight-forward implementation of the sender-initiated approach.

Figure 5 (a) shows the partitioning of the input array for
�

processors, where partition
�

receives the

next
� �

consecutive items. The weights
� �

are computed in the first 5 steps of the meta-scheduling

algorithm presented in Figure 4.

The next partitioning algorithm does not make the assumption that sub-tasks have the same

granularity. Instead, this algorithm makes the less restrictive assumption that, while the sub-task

granularity varies, the input data is an array sorted in descending order of the sub-task granularities

(this assumption holds only for the AP module, where the input paragraphs are sorted in descending

order of their relevance to the question). Given this order, partitions are constructed through a

round-robin interleaving of items, in an attempt to obtain similar average sub-task granularities

across partitions. This strategy is illustrated in Figure 5 (b). Note that each partition
�

still receives

14

��

��

��

��

��

��

P1

P2

...
P2

Pn

Pn

Pn

...

...

...
P1

P2

W1

W2

Wn

(a)

Wn

W2

W1

P1

...

...

P2

Pn

P1

P2

...
Pn

...
P2

Pn

(b)

�	��

������

����������������� �"!$#&%('*)+%-,.!0/&1324#&5(!-67!867/:9<;=,>6@?&AB!-%$C
D&E0F+G 6@H7IJ2�#&5(!-67!-6@/:94% G %-6794?K,>67!-A4,>5
!-A4,ML+NPORQS/:5UTVL+NPORQW#&24245(/X#&Y$A

Z[E 1�/&5\,�#&Y$A]%-,
H@,>Y.!8,
I^245(/_Y
,>%-%(/:5U`PI4/a679J2�#&5-#&H@H7,>H
�b#XC<ca67?:58#�!-,d2�#&5V!86e!86@/&9<`f!8/K245-/[Y>,
%-%(/:5g`
� F C<;h#&6e!\!$#&%('<!8,
5-ci6@9�#�!-6@/:9
��Y	CJ671�% G Y
Y>,>%(%(1 G H�!8,
5-ci6@9�#j!86@/&9<5-,
ca/	k:,

2�#&5(!-67!-6@/:9J`f1�5-/&cl!8A+,m24#&5(!-67!867/:9<%(,
!
n_E 6e1 G 94245(/_Y
,>%-%(,>Io24#&5(!-67!867/:94%

�b#XC F4G 6@H7I]#K9+,
;p!8#&%-'<1�5(/:cl!-A4, G 94245(/_Y
,>%(%-,>I^2�#&5(!-67!-6@/:94%
� F CMq G ca2J!-/<L[!-,>2 D /&1�!-A4,mrtsX�	�vuxw�y�s[z��|{�s[�}#&H@?&/:5-6e!8A4c

(c)

Figure 5. Sender-controlled algorithms: (a) direct partitioning (SEND), (b) interleaved partition-
ing (ISEND), and (c) common distribution strategy

� �
items, but its items are not necessarily consecutive in the item array. We named this algorithm

ISEND, from “interleaved SEND”.

While the SEND and ISEND algorithms offer solutions for the partitioning problem, a com-

plete scheduling algorithm must also handle failure recovery. Because both SEND and ISEND are

sender-controlled algorithms, they use the same failure recovery strategy, presented in Figure 5 (c).

In the actual implementation, the task distribution algorithm from Figure 5 (c) replaces Step 5 of

the meta-scheduling algorithm. The task distribution algorithm presented in Figure 5 (c) allocates

in parallel each partition to the corresponding processor and waits for the sub-task termination.

The parallel monitoring of the working processors is implemented with one dedicated thread per

processor. The failure of a working processor, or of the corresponding interconnection network, is

detected through TCP error messages. If one or more of the working processors fail before the allo-

cated partitions are processed, the distribution algorithm builds a new task input by concatenating

all unprocessed partitions. The scheduling procedure is repeated until all partitions are processed.

4.1.2 Receiver-Controlled Partitioning Algorithms

The last partitioning algorithm presented makes no assumption about the sub-task granularities.

Under these loose conditions the computed processor weights can not be used to approximate the

15

chunk
padded

size

chunk
size�������������������������

���������������

��

������������������������

C1

C1

Ck

Ck

C2

C2

C3

Ck

...

C3

C4

C4

(a)

���	��

������������������������� �"!$#&%(')#+*,�.-$/102!$3&�+45�645-87:9;*<4>=$?@�+#"A
B$C.D)E 4>F5G:�6?2*IH"? E 72%J#&*��
KLC /�-$3M*�!$H"?N#+*�F>*<H,�6*�GO023&-PH�*<#+#&-83RQSG2-T457J0	!$3+!$F>F5*<F

�U!VAJWYX�Z�[)\�]_^`Q�acbedcf@gUh�\
� D AJF>-L-80:9R?24>F5*i���+?2*<3&*j!�3+*IH"? E 72%@#k!�l�!$4>F>! D F5*�A�mn�poiWYX�Z�[)\�]_^`Q�aqA

4 C 3+*�rT-�l$*s7)*,tL�.H"? E 72%J/�3+-8ru�6?2*IH"? E 72%�#+*,�4>4 C ri4>=83+!��6*vH"? E 72%J�6-w023+-LH<*�#+#&-83vQ454>4 C 9�!$45�M�6!$#+%x�+*<3&rT457	!��645-8745l C 45/ E 7)# E H�H<*<#&#&/ E Fy�6*�3+ri4>7	!��+4>-87z C rT-�l$*sH"? E 7)% D !$H"%:�6-{�+?2*IH"? E 72%J#+*,�| C W"X$Z�[)\�]_^`Q�a}b�~�X���\
(b)

Figure 6. Receiver-controlled algorithm (RECV): (a) partitioning, and (b) distribution strategy

partition sizes. Instead, this algorithm divides the item array into equal-size chunks. Theoretically,

the chunk granularity can be as small as one item. Figure 6 (a) illustrates the partitioning of the

item array into � chunks of size 2, with chunk � extended to include the last item. The processor

which generated the chunks initiates the task processing by alerting the selected processors that

work is available. Nevertheless, the initiating processor does not make any assumptions about how

much work will be allocated to each processor. Each working processor requests and processes

one chunk at a time according to its local resource availability, until all chunks are processed.

We consider this approach a receiver-controlled algorithm (hence the name RECV), because the

exact amount of work migrated is decided by the receiving processors. The complete algorithm

is presented in Figure 6 (b). The Figure 6 (b) algorithm concurrently assigns chunks to working

processors until all chunks are processed. Recovery from a node failure is implemented by storing

the unprocessed chunks back in the available chunk set, and removing the failed processor from

the working processor set.

The RECV algorithm has two advantages: (i) the differences between sub-task granularities

are minimized by using small-size chunks, and (ii) the algorithm provides a better mapping of

the remote resource loads by letting the working processors compete with each other for work.

The main disadvantage of this algorithm is that, for the AP module, the distribution overhead is

inversely related with the chunk size, because a constant number � � of answers must be extracted

from each chunk, where � � is the number of answers requested by the user. Hence, the smallest

16

���������	�	
�����
�������� ���������	�
�	������������ �����!	"#���$�&%�')(*%���(+%	,-(*%	�
%)'.�/��
#�#���	"0����"	��1��	�����$�32��
%�,0�/��
#�#���	"0����"	��1��	�����$�54�
#�6���6���
%��0�/��
#�#���	"0����"	��1��	�����$�32�7)���
%	�8�/��
#�#���	"0����"	��1��	�����$�3
�9:��'
%	��2��;�)���/<��#"0�;��"#�#1��	�	���$�
�9:��'.���8�-��'/=0�����	�
%	�8�/��
#�#���	"0����"	��1��	�����$�3
�9:� �
%)'>2��;�)���/<��#"0�;��"#�#1��	�	���$� 2#�8�;�0�-� �	�0�����#�
%)'.�/��
#�#���	"0����"	��1��	�����$�?��@��
%	��2��;�)���/<��#"0�;��"#�#1��	�	���$�
�9:� �0���8�-� ��'.�����	�
%	�8�/��
#�#���	"0����"	��1��	�����$� A6��@��;'
%�,�2��;�)���/<��#"0�;��"#�#1��	�	���$�34#
#�6���6�����;�0�-�3B6'.�����	�
%�,0�/��
#�#���	"0����"	��1��	�����$� A6��@��3�
%)'>2��;�)���/<��#"0�;��"#�#1��	�	���$�5��@��C���0�-�;';=0�����	�
%	��2��;�)���/<��#"0�;��"#�#1��	�	���$� A���@��;'D�;�0�-��'	'.�����	�
%�,�2��;�)���/<��#"0�;��"#�#1��	�	���$� A���@��3���;�0�-��'/�0�����	�
%���2��;�)���/<��#"0�;��"#�#1��	�	���$� 2�7)�������E')� B	�0�����	�
�	���*
�4	4.��<����#
	"��."#!����
�	���&�������6�/F	�	".=�'/�.9�
#�	
# 	�	
�9#<��
�	����9�
#�	
# 	�	
�9	<��������6�;F��;�	 ��6���6���*�-�3�#,0�����	�
���������	�	
����.�#���>'��3G	=������	�
���������	�	
����.��H������3��'D�����	�
I ��������4������	�	"D����!	"	���$�
%)'KJ3�-�3�#B6LM(&%	�NJ5���3�	B�LM(&%�,OJ3�-� �	B6L)(*%#�PJ3�-�3�#B6L
I ���*
��	����9��	�	".G	G�'Q9�
#�	
# 	�	
�9#<��
I ������������ �����!	"#���$�
%)'KJ3�	�	��LM(*%��EJ5�	�#�6LM(&%	,NJ5�#�	�6L)(&%	�PJ3�	��'�L
%)'.�/��
#�#���	"��#�	��9�
#��
� 	��
�9	<��
%	�8�/��
#�#���	"��#��'R9�
#��
� 	��
�9	<��
%�,0�/��
#�#���	"��#�	��9�
#��
� 	��
�9	<��
%��0�/��
#�#���	"��#�	��9�
#��
� 	��
�9	<��
%	��2��;�)���/<��#"��	��'Q9�
#��
� 	��
�9	<6�����0,	=-� ��B0�����	�
%�,�2��;�)���/<��#"��	�	�.9�
#��
� 	��
�9	<6�����0G	S-��';�8�����	�
%���2��;�)���/<��#"��	�	�.9�
#��
� 	��
�9	<6�����0G	=-� �	B0�����	�
%)'>2��;�)���/<��#"��	�	�.9�
#��
� 	��
�9	<6�����0=	=-� ��G0�����	�
I ���*
�4	4.��<����#
	"��."#!����
I ���*
����;A��#�0��!#�	�6�;�� ��6���6���+���3�#�0�����#�
���������	�	
���� I ����=#=-�3S#S������#�
���������	�	
�����
 I �>';��')� =	=������	�

(a)

T�U�V�W�T	X	Y�Z�W�[�\�]�^�_ `�a�b�W�Z	b
\	c�]�d�b�U�e�f�`�e�g	h#W�b$]&i�j)k*i�l�k+i	a-k*i	`
i)j.b/T�Y#X#T�W	h0U�e�h	W�m�T	X�W�Z$_3n�T
i�a0b/T�Y#X#T�W	h0U�e�h	W�m�T	X�W�Z$_5o�Y#T6U�V6W�b
i�l0b/T�Y#X#T�W	h0U�e�h	W�m�T	X�W�Z$_3n�p)U�b
i	`8b/T�Y#X#T�W	h0U�e�h	W�m�T	X�W�Z$_3Y�q:_�j
i	`�n�U;e)U�b/r�W#h0U;e�h#W#m�T	X	W�Z$_ Y�q:_�j.U�e8^-_�j/s0b�W�Z	b
i	`8b/T�Y#X#T�W	h0U�e�h	W�m�T	X�W�Z$_3Y�q:_ l
i)j>n�U;e)U�b/r�W#h0U;e�h#W#m�T	X	W�Z$_ n#T8U;e0^-_ `	^0b�W�Z#b
i)j.b/T�Y#X#T�W	h0U�e�h	W�m�T	X�W�Z$_?b�t�V
i	`�n�U;e)U�b/r�W#h0U;e�h#W#m�T	X	W�Z$_ Y�q:_ l0U�e8^-_ l�j.b�W�Z	b
i	`8b/T�Y#X#T�W	h0U�e�h	W�m�T	X�W�Z$_ u6b�t�_;j
i�a�n�U;e)U�b/r�W#h0U;e�h#W#m�T	X	W�Z$_3o#Y#T6U�V6W�b�U;e0^-_3v6j.b�W�Z	b
i�a0b/T�Y#X#T�W	h0U�e�h	W�m�T	X�W�Z$_ u6b�t�_3l
i)j>n�U;e)U�b/r�W#h0U;e�h#W#m�T	X	W�Z$_5b�t�VCU�e0^-_;j;s0b�W�Z	b
i	`�n�U;e)U�b/r�W#h0U;e�h#W#m�T	X	W�Z$_ u�b�t�_;jDU;e0^-_�j	j.b�W�Z	b
i�a�n�U;e)U�b/r�W#h0U;e�h#W#m�T	X	W�Z$_ u�b�t�_3l�U;e0^-_�j/^0b�W�Z	b
i�l�n�U;e)U�b/r�W#h0U;e�h#W#m�T	X	W�Z$_ n�p)U�b�U�eEj)_ v	l0b�W�Z	b
\	c�]*Y�o	o.T�r�X�W#Y	h�b.h#g�e�W
\	c�]&X�W�Z�W6U/w	W	h.s�j/l.q�Y#X	Y#f	X	Y�q#r�b
\	c�]�q�Y#X	Y#f	X	Y�q	r�X�W�Z�W6U;w�U;e	f�T6U�V6W�]*^-_3l#a0b�W�Z	b
T�U�V�W�T	X	Y�Z�W.\#c�]>j�_3x	s�b�W�Z	b
T�U�V�W�T	X	Y�Z�W.\�y�]�^�_3^�jDb�W�Z	b
z \�]�b�W�o�W�Z�T	W	hD`�e�g	h	W�b$]
i)jK{3^-_3l#v6|Mk&i	lN{5^�_3l	v�|Mk&i�aO{3^-_ l	v6|)k*i#`P{3^-_3l#v6|
z \�]*Y�Z	Z�W�q�T	W	h.x	x�jQq�Y#X	Y#f	X	Y�q#r�b
z \�]�d�b�U�e�f�`�e�g	h#W�b$]
i)jK{3l	l	^�|Mk*i�lE{5l	l#^6|Mk&i	aN{5l#l	^6|)k&i	`P{3l	l�j�|
i)j.b/T�Y#X#T�W	h�l#l	^�q�Y#X�Y�f	X�Y�q	r�b
i�a0b/T�Y#X#T�W	h�l#l	^�q�Y#X�Y�f	X�Y�q	r�b
i�l0b/T�Y#X#T�W	h�l#l	^�q�Y#X�Y�f	X�Y�q	r�b
i	`8b/T�Y#X#T�W	h�l#l�jRq�Y#X�Y�f	X�Y�q	r�b
i�l�n�U;e)U�b/r�W#h�l	l	^.q�Y#X�Y�f	X�Y�q	r6b�U�e0}	x-_ `�x0b�W�Z	b
i	`�n�U;e)U�b/r�W#h�l	l�jQq�Y#X�Y�f	X�Y�q	r6b�U�e0}	x-_ ~	x0b�W�Z	b
i)j>n�U;e)U�b/r�W#h�l	l	^.q�Y#X�Y�f	X�Y�q	r6b�U�e0x�j)_ s	a0b�W�Z	b
i�a�n�U;e)U�b/r�W#h�l	l	^.q�Y#X�Y�f	X�Y�q	r6b�U�e0x	a-_ v	^0b�W�Z	b
z \�]*Y�o	o.T�r�X�W#Y	h�b.h#g�e�W
z \�]*Y�e�b;u�W#X0b�g#X	T6U;e�f�T6U�V6W�]+^�_3^#^0b�W�Z#b
T�U�V�W�T	X	Y�Z�W z \�]�x�`�_3v#~�b�W�Z#b
T�U�V�W�T	X	Y�Z�W�[z]�x#}-_3s#a�b�W�Z#b

(b)

���;�����	�6���	����������� �M���#���	�
�	���&�)���/���0�����#�������*�)�M�+�6�-�����-���	�
�	���
���;�����	�6���	���	���>�$�3�#�K�#���	�
���;�����	�6���	�����������3�����#���	�
� �������	�����C�������� ��
� �������	�	��¡��6�#�.¡����6��������¡	�)�� � 6�
� ���&�)���/���E�������	���������
 	�-�� ����Q 	�-�Q ����Q ����Q 	�-�Q ����Q 	�-�� ����R 	�-�� ��
� ���&�)���/���0�����#�������*�)�M�+�6�-�����-���	�
�)�����6�������	�8�/���	���K�
���8���6�������	�8�/���	���E�
���8���6�������	�8�/���	���K�
�	�C���6�������	�8�/���	���K�
����¢6�/�)�	�/���	�0���	�����C�0�;�C���$�3 ��0�	�����
���8���6�������	�8�/���	���0�
�	�8¢6�/�)�	�/���	�0���	�����0�C�;�C�����3£��0�	�����
�	�C���6�������	�8�/���	���K£
�)�.¢6�/�)�	�/���	�0���	�����0�C�;�C�� ��3¤�¤0�	�����
�)�����6�������	�8�/���	���K¥
����¢6�/�)�	�/���	�0���	�����0�C�;�C�� ��3¥�¤0�	�����
���8���6�������	�8�/���	���K¤
�	�8¢6�/�)�	�/���	�0���	�����0£C�;�C��£��3���0�	�����
�	�C���6�������	�8�/���	���K
����¢6�/�)�	�/���	�0���	�������E�;�C���$�3¥��0�	�����
���8���6�������	�8�/���	���K�
�)�.¢6�/�)�	�/���	�0���	�����0¥C�;�C����� �M���	�����
�)�����6�������	�8�/���	���E���
�)�.¢6�/�)�	�/���	�0���	�����C���K�/�C���3�� 0�	�����
����¢6�/�)�	�/���	�0���	�����0¤C�;�C��£�� �6�0�	�����
����¢6�/�)�	�/���	�0���	�����0�C�;�O�/���3�#�K�	�����
�	�8¢6�/�)�	�/���	�0���	�����0 C�;�C�����3���0�	�����
� ������¦	¦��#���6�	�	�����������
� ����������§6�#�K�#�#�	�)�/�������;�������-�5�	�8�	�����
���;�����	�6���	� � ���� ��-�5£	�0�	�����
���;�����	�6���	��� � �� �£-�5�6���	�����

(c)

Figure 7. System traces with RECV for PR/PS and (a) SEND for AP, (b) ISEND for AP, or (c) RECV
for AP

the chunk size, the greater the number of answers that have to be sorted after the AP module. In

Section 6 we present an empirical experiment which finds the chunk size for which RECV delivers

its best performance.

4.1.3 Partitioning Examples

For a better understanding of the partitioning algorithms, we present in this subsection examples of

the system behavior under the three partitioning strategies. The examples presented are simplified

traces of a homogeneous 4-processor system executing question 226 from the TREC-9 set.

The first trace, presented in Figure 7 (a), uses the RECV partitioning strategy for the PR and PS

tasks and the SEND approach for AP. For the clarity of the example, the IP addresses used for node

identification are replaced with four generic names: N1, N2, N3 and N4. The question answering

task is started on node N1. Figure 7 (a) indicates that the four nodes selected for paragraph retrieval

17

and scoring compete with each other for the 8 sub-collections part of the TREC-9 database. This

dynamic strategy is extremely efficient for the PR task where the collection processing time varies

significantly: from 0.19 seconds to 1.52 seconds. Figure 7 (a) shows that, while node N2 processes

one collection, the other nodes process all other seven collections. Due to these high variances

in collection processing times, the weight-based partitioning performed by the sender-controlled

algorithms is virtually inapplicable. For this reason, in the actual system implementation the PR

task is partitioned only with the RECV strategy. The second part of the Figure 7 (a) shows the

timing obtained with the SEND partitioning strategy for the answer processing module. The trace

indicates that, even though each node processes the same number of paragraphs, the processing

time varies significantly: the node which received the first 220 paragraphs finished last, and the

node which received the last 221 paragraphs finished first, more than 60 seconds ahead.

The ISEND algorithm achieves a much better partitioning for the AP module. Figure 7 (b)

indicates that all ISEND-generated AP sub-tasks finish within a 6-second interval, and the over-

all processing time for the AP module is more than 15 seconds shorter than the processing time

observed for the SEND algorithm.

The best behavior is observed for the RECV partitioning approach. Due to the fact that pro-

cessors dynamically compete with each other for work, a more even load distribution is achieved.

It is however surprising that, for the AP task, the RECV performance is very close to the ISEND

performance, a much simpler algorithm. This is an indication that, even though it was not designed

for this purpose, the paragraph ranking performed by the PO module provides also a good ranking

of the paragraph processing complexity. In Section 6 we present experiments which analyze in

more detail the performance of the three partitioning algorithms.

4.2 Hardware-Dependent Empirical Parameters

This section reviews the hardware-dependent parameters used throughout this paper. These

parameters are: the weights used by the load functions in Equations 1, 2, and 3, and the under-load

conditions used by the meta-scheduling algorithm for the partitioning of the PR and AP modules

(introduced in Figure 4). Because these parameters are dependent on the underlying hardware, it is

important to have a simple measurement methodology in order to guarantee the portability of the

system.

18

CPU DISK
QA 0.79 0.21
PR 0.20 0.80
AP 1.00 0.00

Table 3. Average resource weights measured for the TREC-9 question set

We first address the measurement of the load function resource weights. These weights indicate

how significant the corresponding resource is for the desired Q/A module, for a particular question

set1. In practice, the weight associated with the CPU resource2 is computed as the percentage

spent by the CPU in a non-idle state during the module execution. Because the only other resource

highly utilized by the sequential Q/A application is the disk, the remaining CPU cycles are assumed

to be spent performing I/O accesses. This procedure yielded the resource weights presented in

Table 3 for the TREC-9 question set. Each row in Table 3 indicates the resource weights for the

corresponding load function. For example, the first row indicates that the average Q/A task spends

79% of the execution time using the CPU, and 21% accessing the disk. Hence the load function

used by the question dispatcher on our test platform is:

���������
	���
�� � ��������� ������������� ������� ���! �" � ��� &�����	�
 �������),+.- � ��� (4)

Similarly, the load functions for the PR and AP dispatchers become:

��������� 	.��
�� � ��� +�% � �%��������
 ������� ���! �" � ��� &������ �#�����),+.- � ��� (5)

�#�������
	���
 � � � ��� + � ����� �������),+.- � �%� (6)

The second issue addressed in this section is the implementation of PR and AP under-load condi-

tions required by the meta-scheduling algorithm presented in Figure 4. The under-load conditions

are empirical parameters which can be set either to minimize the question response time, or to

maximize the throughput. For the experiments presented in this paper we use under-load condi-

tions that favor throughput versus response time. Intuitively, if for each task the number of nodes

considered as under-loaded is increased, the individual question response time is improved due

to the enhanced partitioning, but the overall system throughput decreases due to the partitioning

overhead. In practice, the throughput does not decrease immediately as the degree of partitioning

1Dynamic task workload detection strategies such as [11] are not addressed in this paper.
2By “CPU resource” we understand the combination of processing unit and dynamic memory.

19

is increased: for moderate partitioning, the overall throughput is improved due to efficient local

scheduling. This is best illustrated by the following experiment: a set of questions is repeatedly

executed on a single processor, and at each repetition the number of questions executing simulta-

neously is increased. This experiment indicated that, on our test platform, for 2 or 3 simultaneous

questions the system throughput is better than the throughput obtained by running the questions

sequentially, because the operating system reuses one question’s I/O wait time as useful CPU time

for another question. For more than 4 simultaneous questions the throughput is smaller than the

sequential question execution throughput due to two factors: (i) disk over-utilization caused by

multiple questions executing simultaneous paragraph retrievals, and (ii) excessive page swapping

caused by the lack of dynamic memory. This experiment is consistent with the results reported

in [7], where the best performance for a distributed IR system is obtained with 4 tasks per node.

The above experiment indicates that the disk is under-utilized if the node executes a single PR or

AP sub-task. In other words, the PR and AP under-load conditions for node
�

are true if the value

of the corresponding load functions for this node are less than the load observed when a single

sub-task executes on this node (
��� � �����/����� +�% for the PR sub-task and

��� � �����/���#��� + for the AP

sub-task):

	.������� ����� ���
����� +�% � �%����� � ��	!��� �	� �#�������
	���
 � � � � +�% � ����
 ��� � �����/����� +�% �� ���������*� ��� ����� � ��� � (7)

	������������������
������� + � �%� � � � ��	!��� �
� �#�������
	���
 � � � ��� + � ����
 ��� � �����/����� � + �� ��������� � ��� ��� � � ��� � (8)

5 Analytical Performance Analysis

This section analyses the analytical performance of the distributed Q/A architecture introduced

in Sections 3 and 4. Two analytical models are introduced: the first model analyzes inter-question

parallelism, and the second model analyzes intra-question parallelism. Through this analysis we

find: (i) the maximum system speedup obtainable using inter-question parallelism, (ii) the maxi-

mum question speedup obtainable using intra-question parallelism, and (iii) the number of nodes

from which the overhead introduced by the intra-question parallelism overcomes its benefits.

The following notations are used in this chapter:

�
����

, the average time to execute � questions on � nodes;

20

� � " , the average number of keywords extracted from a question;

� � + , the average number of paragraphs obtained by the paragraph retrieval module;

� � + � , the average number of paragraphs accepted after the paragraph ordering stage;

����� ����� , the average keyword length;

���	� ����� , the average paragraph size;

� � � , the number of answers per question requested by the user;

��
�� ����� , the answer size;

�
��
������

, the average time to measure the local system load;

����� ����� , the size of the load monitoring broadcast packet;

����� ����� , the average question size;

��� �
���

, the network bandwidth;

��� � � ��� , the disk bandwidth; and

����� � � � , the local memory bandwidth.

5.1 Inter-Question Parallelism Analysis

In this subsection we compute the maximum speedup obtainable using inter-question paral-

lelism. The assumption made here is that all three dispatching points are used, but partitioning is

not enabled due to the high system load. The partitioning overhead is analyzed in the next subsec-

tion. In other words, we analyze the system behavior when it executes a large number of questions,

and each question may change its hosting processor at any of the three dispatching points: before

the Q/A task is started, before the PR module, and before the AP module. Any dispatcher may

migrate a question if the associated scheduling heuristic (see Section 3) detects that the runtime of

the monitored sub-task is improved if executed to a different processor. The following additional

notations are used in this subsection:

�! #" � , the probability that a Q/A task is migrated before it is started;

�! %$'& , the probability that a Q/A task is migrated by the PR dispatcher;

�! � $, the probability that a Q/A task is migrated by the AP dispatcher;

�! �
���

, the probability that a Q/A task accesses the network at any time; and

��(, the average number of questions per processor.

21

The speedup is computed with the formula:

� � � ���
� �� (9)

where
���

is the time to execute � questions on 1 node, and
� ��

is the time to execute � questions

on � nodes.
���

and
����

are computed as follows:

� � �
��
���! �

 � ���
(10)

� �� �
" �� �! � � � ��� & ������� &�� ��� ��� �%���

� (11)

where
� � �%�

denotes the time to execute the
�
th question on a single-processor system, and

������� &�� � ����� ���
is the distribution overhead for the

�
th question. Thus, the speedup equation can be expanded as:

� � � �
� &��
	�
��� ������������������� ���� 	��� � � �� � ��� !

� �
� & � ���������������� �� (12)

where
������� &�� ��� � denotes the average overhead measured for the � questions, and

�
is the average

question execution time on a single-processor system.
����� � &�� � ��� is expanded as:

������� &�� � ��� � � � � �
� � � & � �#"

& � ��$%� ����&
 � �#"
& � � � " &

��� ���
� (13)

where:
� � � �

��� � & � �'" is the average overhead of the load monitoring process for the duration of the

question;
� ��$%� � ��&
 � �#" is the average overhead of the three dispatchers; and

� � � " &
��� ���

� represents the

average migration overhead when all three dispatching points are enabled.

Every second, the load monitoring process performs the following tasks: (i) it inspects the kernel

to collect information about the local load; (ii) it broadcasts the local load on the interconnection

network; and (iii) it stores in memory the local load and load information received from the other

nodes. The local load measurement overhead is
�
���� �

. Theoretically, all nodes broadcast their

local load in the same time, hence the network bandwidth is � �
����(� . Thus, the broadcast time

is: ��� ����� �� �*),+ . The memory storage time is � � ����� ��.-) -0/ . Because the load monitor repeats these

operations every second, the monitoring overhead for the average question becomes:

� � � �
��� � & � �#"

� � ����
���� � & ��� ����� �
� �
��� & � � ����� �

��� � � �
�
!
� � ��� ����� �

� �
��� (14)

22

The question dispatcher scans the processor load information set and selects the processor with

the smallest value for
����� ��� 	���
 � � � � �/�

, where
������� � 	���
 � � � ���/�

is defined in Equation 1. Hence

the scheduling overhead depends linearly on the number of nodes. The PR and AP dispatchers

have a similar overhead:

� ��$%� � ��&
 � �'"
��� ��� ����� �

��� � � � (15)

The migration overhead is expanded as follows:

� � � " &
��� ���

�
� � " � � � " &

��� ���
�
& � $'& � � " &

��� ���
�
& ��� $ � � " &

��� ���
� (16)

where the three terms indicate the overhead of the three dispatching points:
� " � � � " &

��� ���
� denotes the

overhead of the migration initiated by the question dispatcher,
� $'& � � " &

��� ���
� indicates the overhead of

the PR-dispatcher-initiated migration, and
� � $ � � " &

��� ���
� indicates the overhead of the AP-dispatcher-

initiated migration.
� " � � � " &

��� ���
� is expanded as the cost of moving the question to a remote node

and the cost of retrieving the answers from the remote node. Because the network is accessed by

each question with probability �
���

, the available network bandwidth is � �
����(,� � �

��� �
. Considering

that a Q/A task is migrated by the question dispatcher with probability " � , � " � � � " &
��� ���

� becomes:

� " � � � " &
��� ���

�
� #" � � ��� ����� & � �
 � ����� � � �

���
� �
��� (17)

The overhead of the PR migration consists in sending the keywords to the destination node,

receiving the paragraphs extracted by the remote paragraph retrieval engine, and reading the para-

graphs from disk. The available disk bandwidth is � � � ��� ((, and, similarly with the previous equa-

tion, the available network bandwidth is � �
����(,� � �

��� �
.
� $'& � � " &

��� ���
� is then expanded as:

� $'& � � " &
��� ���

�
� %$'&�� � " � � ����� � �

���
� �
��� & � + �	� ����� � � �

���
� �
��� & (

� � � ��� ��� !
� $ & � + � � ����� � �

���
� �
��� (18)

The overhead of the AP migration consists in sending the accepted paragraphs to the remote AP

module, receiving the answers, and reading the answers from disk:

��� $ � � " &
��� ���

�
� � $�� � + � �	� ����� � �

���
� �
��� & � �
 � ����� � � �

���
� �
��� & (

� � � ��� ��� !
� � $ � + � � � ����� � �

���
� �
��� (19)

From Equations 16, 17, 18, and 19, the migration overhead becomes:

� � � " &
��� ���

� !
� � " ��� ��� ����� & � �
 � ����� � & � %$'& � + & � $ � + � � �	� ����� � � �

���
� �
��� (20)

23

0

100

200

300

400

500

600

700

800

900

1000

0 100 200 300 400 500 600 700 800 900 1000

S
pe

ed
up

Processors

10 Mbps
100 Mbps

1 Gbps

(a)

��������� 	�
�
�
��������
� ������� 	�
�
�
��������
��� ������� �!�#"$�

% ���&��� '(
�
�
��������
��) '�*�+-,.�/"$�/0�"$�/,�1��
�) � +(*2	3,.�/"$�/0�"$�/,�1��
4 �����$� 	�	�'�'�
5�(�����
6877 9/: �8��;#<���=>�
? @
ACB D
>E : +A2F#G
>E : �A D8F
>E : 'A.H �JI
>E : �

(b)

Figure 8. (a) Analytical system speedup for various network bandwidths; (b) Plot parameters
based on the TREC-9 question set

From Equations 14, 15 and 20
� ����� &�� ��� � becomes:

����� � &�� � ��� !
� � � ��� ������ �

��� & � #" ��� ��� ����� & � �
 � ����� � & � %$'& � + & � $ � + � � � � ����� � � �
���

� �
��� (21)

From Equations 12 and 21 the speedup becomes:

� � � � (,� � & �
��� �����
� �
��� & � �

��� " ��� ��� ����� & � �
 � ����� �'& � %$'& � + & � $ � + � � �	� ������ � �
��� �

(22)

� � � � (,� �
�

& ��� �����
� �
��� & (�

��� #" ��� ��� ����� & � �
 � ����� � & � $ & � + & � $ � + � � � � ������ � �
��� �

(23)

Using data from the TREC-9 competition, Figure 8 (a) plots the analytical system speedup for

various network bandwidths. Figure 8 (b) shows the parameters used to plot the system speedup.

Figure 8 (a) shows that, for large scale systems, high-performance interconnection networks are

required to obtain good performance. For a fast (according to today’s standards) 1 Gbps net-

work, the system efficiency K , defined as K � � � (� is approximately 0.9 for 1000 processors.

This indicates that the model proposed in this thesis is a viable candidate for efficient, large-scale

Q/A systems. For smaller scale systems, the system is efficient even for slower interconnection

networks: the system obtains an efficiency K � ����

for 100 processors and a 100 Mbps intercon-

nection network.

24

5.2 Intra-Question Parallelism Analysis

While the previous subsection analyzes the system behavior as multiple questions are executed,

this subsection focuses on the individual question. In this subsection we compute the individual

question speedup obtainable using intra-question parallelism and the number of nodes from which

the overhead introduced by the intra-question parallelism overcomes its benefits. The question

execution time on the sequential system is defined by the equation:

� � �!� + & � +�% & � +� & � +�� & � � + (24)

where each module from Figure 1 contributes with its own term in the summation. The question

execution time on the N-node system is defined as:

� � � �!� + &
� +�%
�

& � +�
�

& � +�� &
� � +
�

& ����� � &�� � ���
�
�
�
� & � (25)

The paragraph ordering time
� +�� can not be improved due to the inherent sequential nature of the

corresponding module. In the current Falcon architecture question processing is also considered

a sequential module, hence
� � + is not improved. The rest of the question answering modules,

consisting of over 90% of the overall execution time (see Table 2), can be parallelized with a factor

N. The parallelization process introduces an overhead denoted with
����� � &�� � ���

�
�
�
� & � in Equation 25.

The overhead time is expanded as:

������� &�� ��� �
�
�
�
� & � � � � � �

� � � & � �#"
& � ��$%� ����&
 � �#"

& � $ � & � � � ��� � !
� � $ � & � � � ��� �

� � $'& $ � & � ��� ��� �
& ��� $ $ � & � ��� ��� � (26)

where
� � � �

� � � & � �#" represents the time spent performing load monitoring;
� ��$%� � ��&
 � �'" denotes the over-

head of the PR and the AP dispatchers. Both
� � � �

��� � & � �#" and
� ��$�� ��� &
 � �'" are ignored in Equation 26

because they are comparatively much smaller than the other components of the overhead time (see

Equations 14 and 15).
� $ � & � ��� ��� � represents the task partitioning overhead, generated by the addi-

tional inter-processor communication and the additional modules which control the partitioning

mechanism. The partitioning overhead is further expanded as the cumulative overhead of the PR

and AP module partitioning.

The PR module partitioning time is generated by the time required to send the input keywords

towards the remote paragraph retrieval engines, the time to receive the output paragraphs from the

25

paragraph retrieval modules, and the overhead of the additional paragraph merging module, which

reads the received paragraphs from disk:

� $'& $ � & � ��� ��� �
� � � " � � �����

� �
��� & � + � � �����

� �
��� & � + �	� �����

� � � ��� !
� � + � � �����

� �
��� & � + �	� �����

� � � ��� (27)

In Equation 27 we ignored the keyword propagation overhead, because for our domain of interest

��� � + and � " � � ����� � �	� ����� .
The AP module partitioning time is generated by the time to divide the accepted paragraph set

into sub-sets to be assigned to remote AP modules (task performed by the paragraph assignment

module), the time to send the accepted paragraph sub-sets to the remote AP sub-tasks, the time to

receive the answers, the time to merge the received answers into a single set (task performed by

the answer merging module), and the time to sort the answer set (task performed by the answer

sorting module). Note that each AP module has to return � � answers. The final best � � answers

output to the user are decided in the answer sorting stage.

��� $ $ � & � ��� ��� �
� � + � � � �����

� � � ��� & � + � �	� �����
� �
��� & �O� �
�� �����

� �
��� & �O� �
 � �����

� � � ��� & �O� ��������� �O� � � (28)

��� $ $ � & � ��� ��� � !
� � + � �	� �����

� � � ��� & � + � � � �����
� �
��� (29)

The time to receive, merge and sort the answers are ignored in Equation 29 due to their relatively

small values when compared to the other components of the AP partitioning time. Replacing the

expanded overhead times in Equation 25,
� �

becomes:

� � � �!� + &
� +�%
�

& � +�
�

& � +�� &
� � +
�

& � � + & � + � � � � �����
� �
��� & � � + & � + � � � � �����

� � � ��� (30)

or in a simplified notation:

� � � � $ � &
�

& � � � " (31)

where
� $ � & and

� � � " are defined as:

� $ � & � � +�% & � +� & � � + (32)

� � � " � �!� + & � +�� &
� � + & � + � � � � �����

� �
��� & � � + & � + � � � � �����

� � � ��� (33)

26

0

5

10

15

20

25

30

35

40

45

50

20 40 60 80 100 120 140 160 180 200

S
pe

ed
up

Processors

1 Mbps
10 Mbps

100 Mbps
1 Gbps

(a)

0

10

20

30

40

50

60

70

20 40 60 80 100 120 140 160 180 200

S
pe

ed
up

Processors

100 Mbps
250 Mbps
500 Mbps

1 Gbps

(b)

Figure 9. Analytical question speedup for: (a) disk bandwidth of 1 Gbps and various network
bandwidths; and (b) network bandwidth of 1 Gbps and various disk bandwidths

As Equation 31 indicates, ���� has two major parts: a first part consisting of parallelizable module

times (�����	�), which decreases linearly with
 , and a second part made of sequential modules and

overhead times (����
��), which is constant for a given question. For practical considerations, it is

worth increasing the number of processors as long as �����	����
 is the significant part of ���� . On the

other hand, it is not justified to increase the number of processors after ����
�� becomes the dominant

part of ���� . This is expressed as:

�� �����	�
����
�� (34)

The individual question speedup is computed using the equation:

� ���� ����� �� (35)

� ���� �����! ��	��"# ��	��$% ��	��&! ��	'(�
����
��) �����������
 (36)

Using data from the TREC-9 competition, Figure 9 plots the analytical individual question

speedup for various disk and network bandwidths. As expected, the speedup increases with the

network bandwidth (see Figure 9 (a)) because the overhead of inter-node communication becomes

less significant as the network performance improves. Figure 9 (b) shows that the speedup de-

creases as the disk bandwidth increases. The explanation is that �*��" decreases as disk bandwidth

increases, hence the distribution overhead becomes comparatively more significant.

27

disk � net 1 Mbps 10 Mbps 100 Mbps 1 Gbps

100 Mbps N = 17 N = 64 N = 89 N = 93
S = 8.65 S = 32.84 S = 45.75 S = 47.73

250 Mbps N = 13 N = 49 N = 68 N = 71
S = 6.61 S = 25.30 S = 35.33 S = 36.87

500 Mbps N = 12 N = 43 N = 61 N = 64
S = 6.01 S = 22.49 S = 31.81 S = 33.28

1 Gbps N = 11 N = 41 N = 57 N = 60
S = 5.59 S = 21.35 S = 29.90 S = 31.34

Table 4. Practical upper limits on the number of processors and the corresponding speedups

While the speedup functions depicted in Figure 9 asymptotically approach ideal upper limits,

these ideal speedup values will never be reached by a practical system. Table 4 shows the practical

upper limit on the number of processors computed by Equation 34 and the corresponding speedup

values for various disk and network bandwidths. Depending on these two parameters the practical

upper limit on the number of processors varies from 11 to 93, and the corresponding speedup

values range between 5.59 to 47.73.

The conclusion of this analysis is that the exploitation of intra-question parallelism achieves

significant reduction of the individual question latencies, but it is limited to a small number of pro-

cessors due to the increasing inter-module communication overhead (see Table 4). The exploitation

of intra-question parallelism is necessary for an interactive system where individual question ex-

ecution times need to be reduced as much as possible, but in order to achieve an overall system

throughput intra-question parallelism is not sufficient. The solution for an interactive, large scale

Q/A system is a distributed model where both inter-question and intra-question parallelism are

used.

6 Experimental Results

This section performs an empirical performance analysis of the distributed Q/A model intro-

duced in Section 3. The tests presented in this section focus on the following directions: (i) com-

parison with other load balancing models, and (ii) analysis of individual question speedup obtained

using intra-question parallelism. These experiments show the two advantages of the proposed ar-

chitecture: the first tests show that at high system load, the load balancing strategy implemented by

the three scheduling points outperforms other load balancing models. The second test shows that

at light system load, the exploitation of intra-question parallelism provides significant speedup for

individual questions. Note that even though this section presents separate tests to illustrate these

28

issues, the Q/A system dynamically detects the current load and selects the appropriate degree of

inter and intra task parallelism at runtime.

The experimental hardware platform used in our experiments consists of a network of twelve

500 MHz Pentium III computers running Linux kernel 2.2.12. Each computer has 256 MB of RAM

and 50 GB disk space. A separate computer was dedicated to the parsing server, which requires 180

MB of RAM. The interconnection network is a star-configuration 100 Mbps Ethernet. Each node

has a copy of the TREC-9 collection. The TREC-9 collection was divided into 8 sub-collections,

separately indexed using a Boolean information retrieval system built on top of Zprise [30].

6.1 Comparison with Other Load Balancing Models

The experiments presented in this subsection compare the system performance obtained us-

ing the scheduling techniques described in Section 3 with other approaches. The first technique

considered as benchmark uses a round-robin processor allocation, which emulates the DNS name-

to-address mapping. Throughout the tests presented in this section, this load balancing strategy

is identified as DNS. The second approach adds a dispatcher before the question answering task.

The goal of the question dispatcher is to improve on the rough balancing performed by the DNS

method. Because the round-robin strategy used by DNS does not take into consideration the ac-

tual system load, some requests can be allocated to over-loaded processors. In such situations,

the question dispatcher migrates the question to the least loaded processor at the moment. A dis-

tributed design for the question dispatcher is presented in Section 3. To our knowledge, this is the

only model currently implemented in distributed information retrieval systems [3, 7]. We name

this model INTER. The third method adds two more dispatchers, before the paragraph retrieval and

the answer processing modules. This scheduling approach is the distributed Q/A model presented

in detail in Section 3. We name this model DQA.

In order to achieve a reliable evaluation of the three load balancing models, the Q/A system has

to be in a high load state. Due to the memory limitations of our test platform (256 MB per pro-

cessor), we consider a node to be fully-loaded when it simultaneously runs 4 questions (a question

requires from 25 to 40 MB of memory). A node running more than 4 simultaneous questions is

considered overloaded. The system is brought to a high load state by starting twice the number

of questions that will generate an overload state (

 � , where � is the number of processors), at

29

DNS INTER DQA

4 processors 2.64 3.45 4.18
8 processors 5.04 5.52 7.77

12 processors 7.89 9.71 12.09

Table 5. System throughput (questions/minute)

DNS INTER DQA

4 processors 143.88 122.51 111.85
8 processors 135.30 118.82 113.53

12 processors 132.45 115.29 106.03

Table 6. Average question response times (seconds)

intervals of time ranging between 0 and 2 seconds. The questions were selected randomly from

the TREC-8 and TREC-9 question set. We were however careful to use the same questions and the

same startup sequence for all tests. For all tests we assumed a perfect round-robin initial question

distribution.

The system throughput is presented in Table 5. The measured throughput indicates that the DNS

scheduling relying only on the round-robin distribution of questions performs the worst out of the

three approaches investigated. The INTER strategy increases the throughput with an average of

21%. This performance improvement is due to the question dispatcher which migrates questions

from over-loaded to under-loaded processors. However, the approach implemented by the INTER

strategy is not perfect: questions from over-loaded processors are migrated to processors consid-

ered best for the average question, but which are not necessarily the best for the currently migrated

question. The limitation of the INTER approach is illustrated by the good performance measured

for the DQA strategy, which increases the INTER throughput with an additional 28.8%.

The system throughput is a good indication of system resource utilization. However, for an

interactive system an equally important metric is the user satisfaction, which, from a quantitative

perspective, is expressed by the individual question latency. Table 6 shows the average question

latencies for the three load balancing strategies investigated. The same performance ranking is

observed: INTER outperforms DNS, but the best performance is obtained by the DQA strategy.

The results presented in Tables 5 and 6 indicate that DQA is the best load balancing strategy

out of the three algorithms investigated. The DQA good performance is caused by the succession

of three dispatchers, where each dispatcher improves upon the decision taken by the previous one.

This behavior is illustrated in Table 7, which shows the number of times each dispatcher disagreed

30

INTER DQA

32 questions QA: 8 QA: 17
(4 processors) PR: 10

AP: 10
64 questions QA: 15 QA: 26

(8 processors) PR: 34
AP: 33

96 questions QA: 23 QA: 37
(12 processors) PR: 43

AP: 41

Table 7. Number of migrated questions at the three scheduling points

with the previous allocation. The information presented in Table 7 should be interpreted as follows:

QA indicates the number of times the question dispatcher disagreed with the initial round-robin

question distribution. PR and AP indicate the number of times the paragraph retrieval and answer

processing dispatchers disagreed with the decision taken by the question dispatcher. The results

presented in the third column of Table 7 were also used to compute the migration probabilities at

the three dispatching points used by the analytical model introduced in Section 5. The information

presented in Table 7 is important because it shows that the PR and AP dispatchers are quite active.

For example, for the 4 processor test, the PR dispatcher disagreed with the question dispatcher for

10 questions (out of 32). The same number of disagreements is observed for the AP dispatcher.

This indicates that, in many cases, the processor allocated by the question dispatcher is not the best

for the individual modules.

6.2 Analysis of Intra-Question Parallelism

The first part of this section evaluated the performance of the distributed Q/A system at high

load, by comparing the effectiveness of the implemented load balancing heuristics with other load

balancing strategies. This subsection focuses on the reverse situation: the system performance is

evaluated at low load, when multiple resources are available such that intra-question parallelism

can be exploited. The first experiment presented measures the individual question response times

and speedups obtained using intra-question parallelism. For this test we selected from the TREC8

and TREC9 Q/A track 307 questions that are complex enough to justify distribution on all nodes

(we selected the questions which have at least 20 paragraphs allocated to each AP module). Ques-

tions were executed one at a time, in order to accurately measure
� �

and
� � � � (�� �

. For both

the PR and AP modules we used the receiver-controlled partitioning algorithm described in detail

31

QP PR PS PO AP Question response time
(including overhead)

1 processor 0.81 38.01 2.06 0.02 117.55 158.47
4 processors 0.81 9.78 0.54 0.02 31.51 43.13
8 processors 0.81 7.34 0.41 0.02 17.86 27.07

12 processors 0.81 7.34 0.41 0.02 11.90 21.17

Table 8. Observed module times and average question response times (measured in seconds)

Keyword Paragraph Paragraph Answer Answer
Sending Receiving Sending Receiving Sorting Total
(to PR) (from PS) (to AP) (from AP) (from AP)

4 processors 0.04 0.19 0.15 0.05 0.01 0.44
8 processors 0.08 0.24 0.19 0.09 0.01 0.61

12 processors 0.08 0.24 0.22 0.12 0.01 0.67

Table 9. Measured distribution overhead per question (in seconds)

Section 4 (we justify our decision in the next subsection by showing that the receiver initiated

partitioning algorithm achieves the best performance out of the three algorithms introduced in Sec-

tion 4). The measured module times and average question response times are presented in Table 8.

Table 8 shows that, besides the QP and PO modules which are not partitioned, the module latency

times are reduced significantly as the number of processors increases. For example, for the 4-

processor configuration the overall measured speedup is 3.67. The results observed for the 8 and

12-processor configurations, while still showing significant improvement of the module execution

times, are not as impressive as the results measured for the 4-processor test. The explanation is

two-fold: the first cause for the 8 and 12-processor results is the uneven partition granularity. For

example, even though the TREC-9 document collection is divided in 8 sub-collections of roughly

equal sizes, the PR sub-task granularities vary drastically based on the frequencies of the keywords

in the given sub-collection. This uneven distribution of computational effort among sub-tasks re-

duces the speedup of the PR module on the 8-processor configuration from an ideal value of 8 to

5.17. To a less extent, the same observation is valid for the answer processing module. The second

observation applies to the timing of the PR module on the 12-processor configuration. Because the

TREC9 collection is divided in only 8 sub-collections, the execution time of the PR module on the

12-node configuration is similar to the execution time on the 8-node configuration.

The question response times presented in the last column of Table 8 include the overhead of the

partitioning mechanism. This overhead is detailed in Table 9. As expected, the highest overhead

is observed for the manipulation of paragraphs. Nevertheless, the complete overhead is small, ac-

32

Analytical Measured

4 processors 3.84 3.67
8 processors 7.34 5.85

12 processors 10.60 7.48

Table 10. Analytical versus measured question speedup

3

3.5

4

4.5

5

5.5

6

6.5

7

5 10 20 40 60 80 100

A
P

 s
pe

ed
up

Chunk granularity

4 processors
8 processors

Figure 10. Answer processing speedup for the RECV partitioning algorithm and various para-
graph chunk sizes

counting for less than 3% of the question response time in all configurations. Table 10 summarizes

our analysis of intra-question parallelism: we measured significant speedup of individual ques-

tions, but the speedup measured is lower than the theoretically estimated speedup mainly due to

uneven partition granularities.

6.3 Comparison of Partitioning Strategies

This subsection investigates the performance of the three partitioning algorithms proposed in

Section 4: SEND, ISEND, and RECV. The performance of these algorithms is measured for the

partitioning of the answer processing module, because the low task granularity allows more ex-

perimental flexibility. The first experiment measures the optimal chunk granularity for the RECV

algorithm. This partitioning strategy divides the module input in smaller equal-size chunks, which

are retrieved and processed one by one by the processors selected for partitioning. The chunk size

can be preset (i.e. the sub-collection for paragraph retrieval) or set before partitioning (i.e. number

of paragraphs for the answer processing modules). Intuitively, small chunks have the advantage

that the uneven partition granularity problem is minimized. The previous section showed that this

33

SEND ISEND RECV
4 processors 2.71 3.61 3.73
8 processors 4.78 6.25 6.58
12 processors 7.17 9.22 9.87

Table 11. Answer processing speedup for different partitioning strategies

is a significant problem, especially for the PR module where the chunk sizes can not be modified

(see Table 8). On the other hand, small chunks have the disadvantage of increased distribution

overhead (more connections are required and more answers have to be sorted afterwards). This

experiment provides an empirical answer to the above dilemma. Figure 10 shows the speedup for

answer processing module when the RECV partitioning strategy is used with chunk sizes varying

from 5 to 100 paragraphs. We measured the system behavior for 4 and 8-processor configurations.

Figure 10 supports our intuition: the best performance is observed for chunks of approximately 40

paragraphs. The performance for bigger chunks decreases due to the uneven granularity problem,

while the performance for smaller chunks suffers from the increased overhead.

The next experiment compares the performance of all three algorithms. For the RECV strategy

we used chunks of 40 paragraphs. The speedups measured for the AP module are presented in

Table 11. These results show that the SEND algorithm has by far the worst performance out of

the three. The best performance is observed for the RECV algorithm, closely followed by ISEND.

The good performance of the RECV algorithm is no surprise: it is an accepted fact that receiver-

controlled algorithms achieve better performance than sender-controlled algorithms [32]. A sur-

prise was the good performance measured for the ISEND partitioning strategy. ISEND’s excellent

performance indicates that the PO module indeed sorts the retrieved paragraphs in decreasing order

of their granularity, even though the metrics used address qualitative issues.

Even if the above experiments were performed in the context of answer processing partitioning,

the above observations apply also to paragraph retrieval partitioning with few modifications. A

separate experiment indicated that the RECV strategy outperforms the SEND algorithm for PR

partitioning. The difference between the two strategies was even more significant than the results

presented in Table 11. The explanation is that the uneven granularity problem is more evident for

paragraph retrieval than answer processing due to the large, topic-oriented collections. The ISEND

algorithm does not apply to PR partitioning, because document collections are not ranked like the

paragraph set considered in AP partitioning.

34

7 Conclusions

This paper introduces a distributed architecture for question answering systems. The architecture

proposes a dynamic load balancing tailored for the specific requirements of the Q/A application: a

large number of simultaneous questions must be simultaneously serviced, and the individual ques-

tion latencies must be reduced as much as possible. The distributed Q/A model proposed exploits

both inter and intra-question parallelism using three scheduling points: one before the Q/A task

is started, and two before the Q/A task performance bottlenecks: paragraph retrieval and answer

extraction. All schedulers use allocation heuristics specialized for the resource requirements of the

managed module. The overall effect is that the Q/A task is migrated at any of the three scheduling

points to the node best fit for the remaining of the Q/A task in order to maximize system through-

put, and, if multiple nodes are under-loaded, the performance bottleneck modules are partitioned

in order to reduce the individual question response time.

An analytical performance model is introduced. The model analyzes the system behavior under

two conditions: the inter-question parallelism overhead is analyzed when all three dispatchers

are deployed, but partitioning is not used because the distributed system is used at full capacity,

and the intra-question parallelism overhead is analyzed when the system is under-loaded and the

Q/A task can be partitioned. The analysis of the partitioning overhead indicates that intra-question

parallelism leads to significant speedup of individual questions, but it is practical up to about 90

processors, depending on the system parameters. On the other hand, while the exploitation of inter-

task parallelism does not guarantee the same individual question speedups, it provides a scalable

way to improve throughput. The analytical model indicates that, if fast interconnection networks

are available, the system efficiency is good (approximately 0.9) even for 1000 processors.

The experimental results indicate that, at high system load, the dynamic load balancing strategy

proposed in this paper outperforms two other traditional approaches. The analysis of the two

partitioning strategies proposed (sender and receiver-controlled) indicates that for the paragraph

retrieval module the receiver-controlled partitioning approach is the only practical procedure. For

the answer extraction task, the sender-controlled approach achieves comparable performance with

the receiver-controlled method.

35

References

[1] A. Acharya and S. Setia. Availability and utility of idle memory in workstation clusters. In Pro-
ceedings of ACM SIGMETRICS Conference on Measuring and Modeling of Computer Systems, May
1999.

[2] D. Andresen and T. Yang. SWEB++: Partitioning and scheduling for adaptive client-server computing
on WWW. In Proceedings of 1998 SIGMETRICS Workshop on Internet Server Performance, June
1998.

[3] D. Andresen, T. Yang, O. Ibarra, and O. Egecioglu. Adaptive partitioning and scheduling for enhanc-
ing WWW application performance. Journal of Parallel and Distributed Computing, 49(1), February
1998.

[4] D. P. Bertsekas and J. N. Tsitsiklis. Parallel and Distributed Computation: Numerical Methods.
Prentice-Hall, 1989.

[5] T. Brisco. RFC 1794: DNS support for load balancing, April 1995.
[6] E. Brown and H. Chong. The GURU system in TREC-6. In 6th Text Retrieval Conference (TREC),

November 1997.
[7] B. Cahoon, K. McKinley, and Z. Lu. Evaluating the performance of distributed architectures for

information retrieval using a variety of workloads. ACM Transactions on Information Systems, 18(1),
January 2000.

[8] J. Callan, M. Connell, and A. Du. Automatic discovery of language models for text databases. In
Proceedings of the ACM-SIGMOD International Conference on Management of Data, pages 479–
490, 1999.

[9] J. Callan, Z. Lu, and W. Croft. Searching distributed collections with inference networks. In Proceed-
ings of the Eighteenth Annual International ACM SIGIR Conference on Research and Development in
Information Retrieval, pages 21–28, 1995.

[10] N. Carriero, E. Freeman, D. Gelernter, and D. Kaminsky. Adaptive parallelism and Piranha. IEEE
Computer, 28(1):40–49, January 1995.

[11] S. Chen, L. Xiao, and X. Zhang. Dynamic load sharing with unknown memory demands of jobs
in clusters. In Proceedings of the 21st Annual International Conference on Distributed Computing
Systems (ICDCS’2001), pages 109–118, 2001.

[12] F. Douglis and J. Ousterhout. Transparent process migration: Design alternatives and the Sprite im-
plementation. Software - Practice and Experience, 46(2), 1997.

[13] M. Faerman, A. Su, R. Wolski, and F. Berman. Adaptive performance prediction for distributed data-
intensive applications. In Proceedings of Supercomputing ’99, November 1999.

[14] L. Gravano and H. Garcia-Molina. Generalizing GLOSS to vector-space databases and broker hierar-
chies. In Proceedings of the 21st International Conference on Very Large Databases (VLDB), pages
78–89, 1995.

[15] L. Gravano, H. Garcia-Molina, and A. Tomasic. The effectiveness of GLOSS for the text database
discovery problem. In Proceedings of the ACM-SIGMOD International Conference on Management
of Data, pages 126–137, 1994.

[16] S. Harabagiu, D. Moldovan, M. Pasca, R. Mihalcea, M. Surdeanu, R. Bunescu, R. Girju, V. Rus, and
P. Morarescu. FALCON: Boosting knowledge for answer engines. In Proceedings of the Text Retrieval
Conference (TREC-9), November 2000.

[17] S. Harabagiu, M. Pasca, and S. Maiorano. Experiments with open-domain textual question answering.
In Proceedings of COLING-2000, August 2000.

[18] M. Harchol-Balter and A. Downey. Exploiting process lifetime distributions for load balancing. ACM
Transactions on Computer Systems, 3(3), 1997.

[19] J. Hawking, N. Craswell, and P. Thistlewaite. Overview of TREC-7 very large collection track. In
Proceedings of the Text Retrieval Conference (TREC-7), November 1998.

36

[20] C. Hui and S. Chanson. Improved strategies for dynamic load sharing. IEEE Concurrency, 7(3), 1999.
[21] P. Jogalekar and M. Woodside. Evaluating the scalability of distributed systems. IEEE Transactions

on Parallel and Distributed Systems, 11(6), June 2000.
[22] T. Kunz. The influence of different workload descriptions on a heuristic load balancing scheme. IEEE

Transactions on Software Engineering, 17(7), 1991.
[23] F. C. H. Lin and R. M. Keller. The gradient model load balancing method. IEEE Transactions on

Software Engineering, 13(1):32–38, January 1987.
[24] P. K. K. Loh, W. J. Hsu, C. Wentong, and N. Sriskanthan. How network topology affects dynamic

load balancing. IEEE parallel and distributed technology: systems and applications, 4(3):25–35, Fall
1996.

[25] R. Luling, B. Monien, and F. Ramme. Load balancing in large networks: A comparative study. 3rd
IEEE Symposium on Parallel and Distributed Processing, pages 686–689, December 1991.

[26] D. Moldovan, S. Harabagiu, M. Pasca, R. Mihalcea, R. Goodrum, R. Girju, and V. Rus. The structure
and performance of an open-domain question answering system. In Proceedings of the 38th Annual
Meeting of the Association for Computational Linguistics, pages 563–570, October 2000.

[27] D. Moldovan, S. Harabagiu, M. Pasca, R. Mihalcea, R. Goodrum, G. R., and V. Rus. LASSO: A
tool for surfing the answer net. In Proceedings of the Text Retrieval Conference (TREC-8), November
1999.

[28] F. Muniz and E. J. Zaluska. Parallel load balancing: An extension to the gradient model. Parallel
Computing, 21:287–301, 1995.

[29] NIST. The Text REtrieval Conference. http://trec.nist.gov/.
[30] NIST. The ZPRISE 2.0 home page. http://www-nlpir.nist.gov/works/papers/ zp2/main.html.
[31] V. A. Saletore. A distributed and adaptive dynamic load balancing scheme for parallel processing of

medium-grain tasks. In Fifth Distributed Memory Computing Conference, pages 995–990, April 1990.
[32] A. Tanenbaum. Distributed Operating Systems. Prentice-Hall, 1995.
[33] G. Voelker. Managing server load in global memory systems. In Proceedings of ACM SIGMETRICS

Conference on Measuring and Modeling of Computer Systems, May 1997.
[34] E. Voorhees and D. Harman. Overview of the ninth Text REtrieval Conference. In Proceedings of the

Text Retrieval Conference (TREC-9), November 2000.
[35] M. Willebeck-LeMair and A. Reeves. Strategies for dynamic load balancing on highly parallel com-

puters. IEEE Transactions on Parallel and Distributed Systems, 4(9):979–993, September 1993.
[36] L. Xiao, X. Zhang, and Y. Qu. Effective load sharing on heterogenous networks of workstations. In

Proceedings of the 14th International Parallel & Distributed Processing Symposium (IPDPS 2000),
May 2000.

[37] X. Zhang, Y. Qu, and L. Xiao. Improving distributed workload performance by sharing both CPU
and memory resources. In Proceedings of 20th International Conference on Distributed Computing
Systems (ICDCS 2000), April 2000.

37

