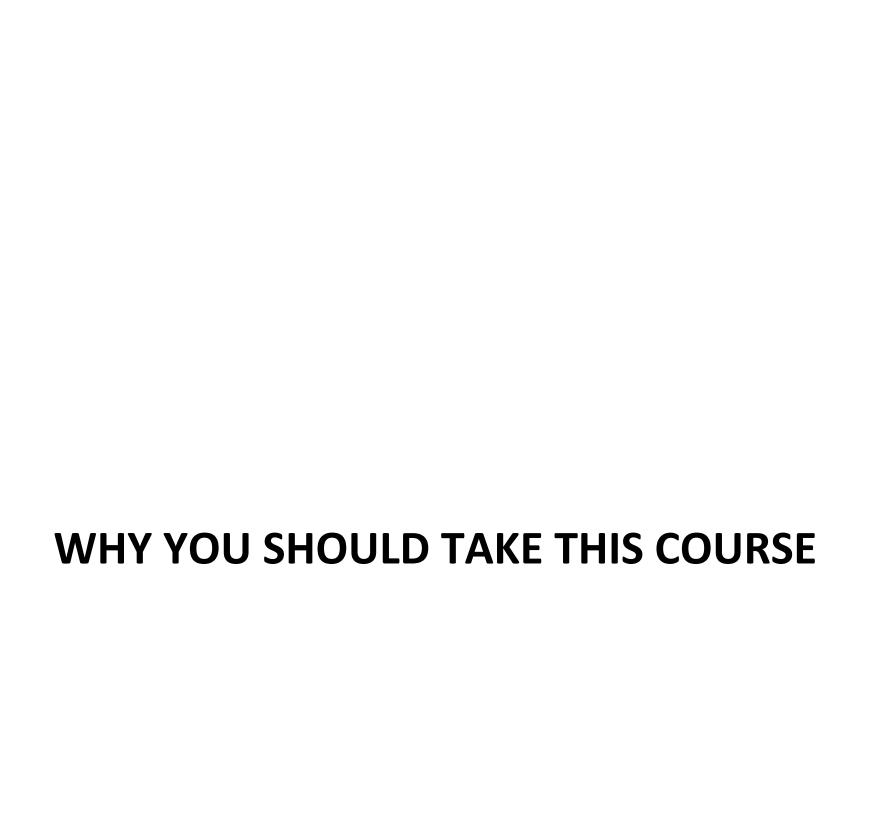
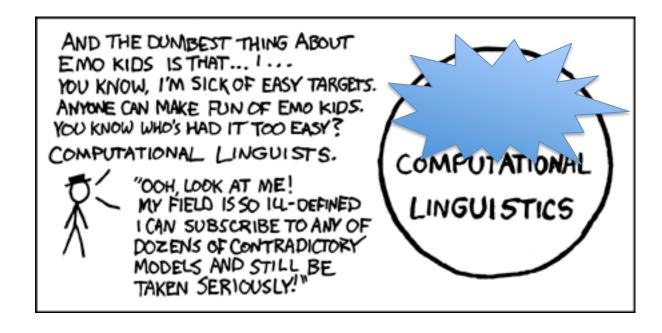
ISTA 455/555 Applied Natural Language Processing

Mihai Surdeanu Fall 2013

Intros


teacher

a person who helps you solve problems you'd never have without them.


futoviumbutnom mubb con

Survey

- Please give your honest opinion about the knowledge you have on the topics listed in the survey.
- Your answers will not be held against you in any way. They are meant to help the instructor structure the material to better serve you.

What the world (well, xkcd) thinks about NLP

Uncensored version: http://xkcd.com/114/

This course will prove that...

- NLP is not ill defined ©
- NLP is extremely useful in the real world
 - Better jobs
 - Fun jobs
 - Meaningful jobs

A simplified view of NLP

Applications
(Sentiment analysis,
information
extraction, question
answering, etc.)

Linguistic Theory (Morphology, Syntax, Semantics, etc.)

Other UA courses

Applications
(Sentiment analysis,
information
extraction, question
answering, etc.)

LING 338

Language and Computers

Other UA courses

Applications
(Sentiment analysis,
information
extraction, question
answering, etc.)

Linguistic Theory (Morphology, Syntax Semantics, etc.) ISTA 421/521
Machine Learning

Other UA courses

Applications
(Sentiment analysis,
information
extraction, question
answering, etc.)

Linguistic LING 439/539
(Morphology, Syn Statistical NLP Semantics, etc.)

rning

Ultimately, you should know all these topics. But...

Applications
(Sentiment analysis,
information
extraction, question
answering, etc.)

Linguistic Theory (Morphology, Syntax, Semantics, etc.)

Your job is likely to be in this space

Your Actual Job

- Understand ML
- Understand linguistic theory
- Build applications

Linguistic Theory (Morphology, Syntax, Semantics, etc.)

This course

ISTA 455/555

- Understand ML
- Understand linguistic theory
- Build applications

Linguistic Theory (Morphology, Syntax, Semantics, etc.)

NLP Applications Sentiment Analysis

- Voice of the voter
- Capital markets modeling/voice of the market
- Voice of the customer
- Voice of the employee
- Brand reputation management

NLP Applications Sentiment Analysis

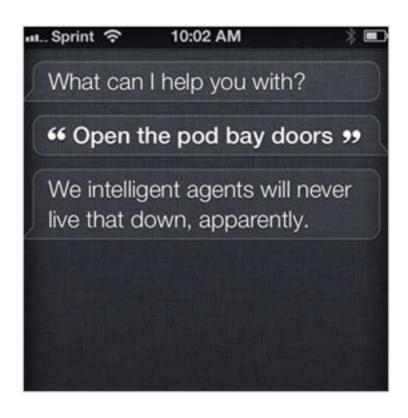
COMMUNITY SENTIMENT

Top stocks creating buzz on Yahoo! Finance message boards

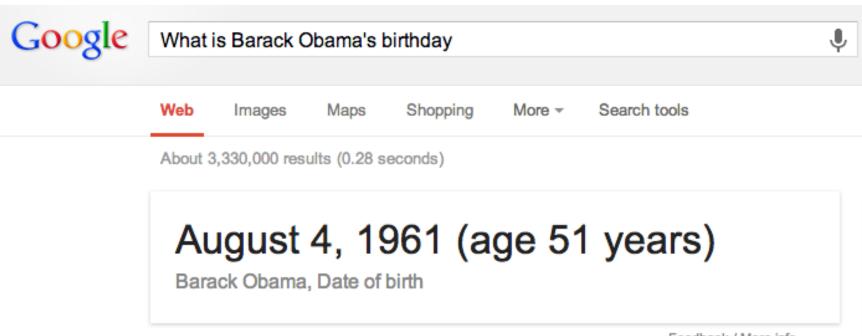
Bullish

Verizon Communications Inc. (VZ)
Prospect Capital Corporation (PSEC)
EntreMed Inc. (ENMD)

Bearish


Chevron Corporation (CVX)
Hoku Corporation (HOKU)
Halliburton Company (HAL)

Powered by Collective Intellect, Inc.

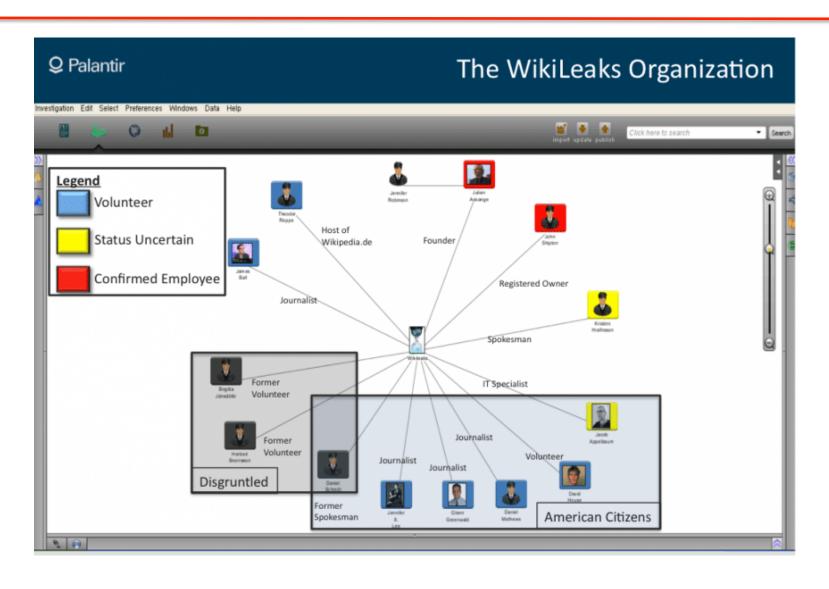

NLP Applications Question Answering

NLP Applications Question Answering

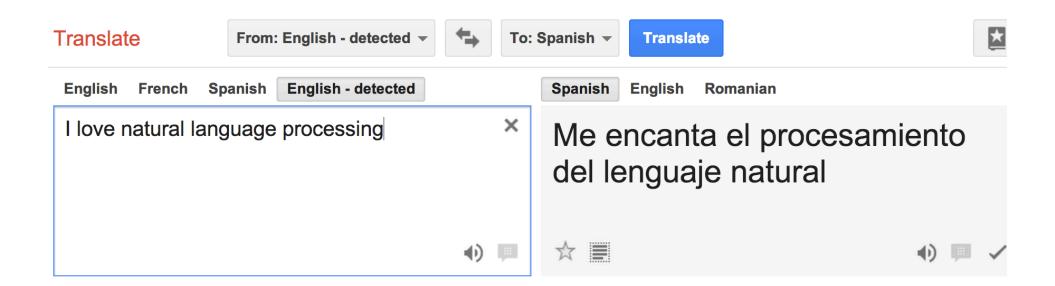
NLP Applications Question Answering

Feedback / More info

NLP Applications Information Extraction


EmployedBy DateOfBirth

"Barack Hussein Obama (born August 4, 1961) is the 44th


and current President of the United States."

Title

NLP Applications Information Extraction

NLP Applications Machine Translation

Goal

- Teach NLP through the design and implementation of real-world applications
 - Sentiment analysis
 - Information extraction
 - Question answering
 - Information retrieval

Prerequisites

- Two programming courses at the level of ISTA 130 or higher
- Recommended: one NLP course (LING 338 or LING 439/539) and one ML course (ISTA 421/521).
 - If you don't have any of the recommended courses, you will need the instructor's permission to continue.

I assume you know

- How to program
- How to write regular expressions
- What are the following (although we will review all this next)
 - POS tagger
 - NER
 - Syntactic parser (constituency-based, dependency-based)
 - Coreference resolution
 - Supervised classification

ESSENTIAL INFORMATION

Location and time

- Lectures
 - Monday/Wednesday 8:30 9:45
 - Social Sciences, Room 118
- Laboratory
 - Wednesday 10:00 11:50
 - McClelland Park, Room 102

Instructor

- Mihai Surdeanu
- Email: msurdeanu@email.arizona.edu
- Office: Gould-Simpson 811
- Office hours: by appointment

Course information

- http://www.surdeanu.info/mihai/teaching/ ista555-fall13/
 - Syllabus
 - Readings
 - First lecture
 - First project
- D2L
 - All lectures
 - Project descriptions
 - Grades

Textbooks

Textbooks

- This course does not follow any particular NLP or ML book, but several are recommended below.
- You should read at least one NLP and one ML book.
- Most of the lectures will follow research papers, which will be posted on the website.

Recommended books

- Daniel Jurafsky and James H. Martin. 2008. An Introduction to Natural Language Processing, Computational Linguistics, and Speech Recognition, Second Edition. Pearson/Prentice-Hall. http://www.cs.colorado.edu/~martin/slp.html (in the bookstore)
 - Most recent NLP textbook. Not free...
- Christopher D. Manning and Hinrich Schütze. 1999. Foundations of Statistical Natural Language Processing. 6th printing with corrections, 2003. The MIT Press. http://nlp.stanford.edu/fsnlp/ (available for free electronically through UA library)
 - Still a great foundational book.
- Christopher D. Manning, Prabhakar Raghavan, and Hinrich Schütze.
 2008. Introduction to Information Retrieval. Cambridge University
 Press. Available for free at http://nlp.stanford.edu/IR-book/
 - Excellent coverage of IR. We'll use it in the last part of the class.

Recommended books

- Trevor Hastie, Robert Tibshirani, and Jerome Friedman. 2009.
 The Elements of Statistical Learning: Data Mining, Inference,
 and Prediction, Second Edition. Springer. Available for free at
 http://www-stat.stanford.edu/~tibs/ElemStatLearn/
 - Great introductory ML book
- Christopher M. Bishop. 2009. *Pattern Recognition and Machine Learning*. Springer.
 - Advanced ML. Not free...

Recommended books

- Steven Bird, Ewan Klein, and Edward Loper. 2009.
 Natural Language Processing with Python.
 O'Reilly Media. Available for free at http://nltk.org/book/
 - Used for the lab
- Applied machine learning in Python with scikitlearn. Available for free at http://scikit-learn.github.io/scikit-learn-tutorial/
 - Used for the lab

Getting the Manning and Schütze book

- Click here: http://bit.ly/16fkUhS
- Click "Show all links from other libraries"
- Click "cognet.mit.edu"

Grading

- No written assignments and exams
- 4 programming projects. Each includes code and a written paper (mimicking a research publication)
- Two in-class presentations
 - Presentation 1: 10 minutes; project 2 or 3
 - Presentation 2: 20 minutes: final project

Projects

YOU CAN'T JUST TURN ON CREATIVITY LIKE A FAUCET. YOU HAVE TO BE IN THE RIGHT MOOD.

Projects

- Project 1
 - Getting your feet wet
 - "Analyzing happiness"
- Project 2
 - Sentiment analysis
 - "Predicting movie ratings"
- Project 3
 - Information extraction
 - "Relation extraction"
- Project 4 (final)
 - Your choice! (must validate with instructor)
 - Must be more complex than projects 1-3
 - Instructor will offer a backup project (Question Answering)

Grading

Component	Weight
Project 1	10 pts
Project 2	20 pts
Project 3	20 pts
Project 4 (final)	30 pts
Presentation 1	5 pts
Presentation 2	10 pts
In-class participation	5 pts
Total	100 pts

Grade	Point range
Α	90 – 100
В	80 – 89
С	70 – 79
D	60 – 69
E	0 – 59

Grade disputes

- Disputes about project grades will be entertained for 2 weeks from the day the project is due, or 1 day before grades are due, whichever is sooner.
- These will be resolved by re-grading the entire project. Note that this can result in a lower grade in the event that new mistakes are discovered.
- No negotiations about individual students' letter grades will be entertained once final grades are assigned.

Collaboration policy

- Projects must be individually implemented.
 Copying is not permitted and will be treated as academic dishonesty.
- Students are encouraged to work together in class/lab to understand problems.

Late policy

- Projects are due electronically via D2L by the stated deadline.
- Permission for an extension must be granted by the lab instructor in advance of the deadline in order to receive full credit for a late submission.
- The first request by a given student is likely to be granted; the probability decreases with each subsequent request.
- No project will be accepted once solutions are posted online.

455 vs. 555

- To differentiate between graduate and undergraduate students, the instructor will require graduate students to implement more complex, state-of-the-art algorithms for the assigned projects.
- Projects will be graded separately for undergraduate and graduate students, as described in each project's description.

Tentative schedule

Topic	Dates
Introduction	Aug 26 – Sep 4
Sentiment analysis	Sep 9 – Sep 18
Information extraction	Sep 23 – Oct 9
Question answering (1)	Oct 14, 16
Presentations	Oct 21
Question answering (2)	Oct 23 – Nov 4
Information retrieval	Nov 6 – 27
Topic modeling	Dec 2, 4
Presentations	Dec 9, 11

Assignment	Due date
Project 1	Sep 8
Project 2	Sep 22
Project 3	Oct 13
Project 4	Nov 24

University policies

- Classroom behavior
 - You are encouraged to ask/answer questions
 - Class participation credit will be assigned based on this
- Attendance
 - Is mandatory
 - Students who miss more than 1/3 of classes will be dropped
- For more, see syllabus

My recommendations

- Pick one of these
 - Python
 - Scala
 - Java
 - C/C++
- The "official" programming language in this class will be Python
 - But I don't use it for my own research...

Python

- Pros
 - Clean syntax
 - Popular: many NLP/ML libraries exist
 - Clean exception handling
- Cons
 - Slow
 - Dynamically typed
 - No great IDE

Java

Pros

- Pretty fast
- Probably the most common language for NLP
- Clean exception handling
- Statically typed
- Several great IDEs

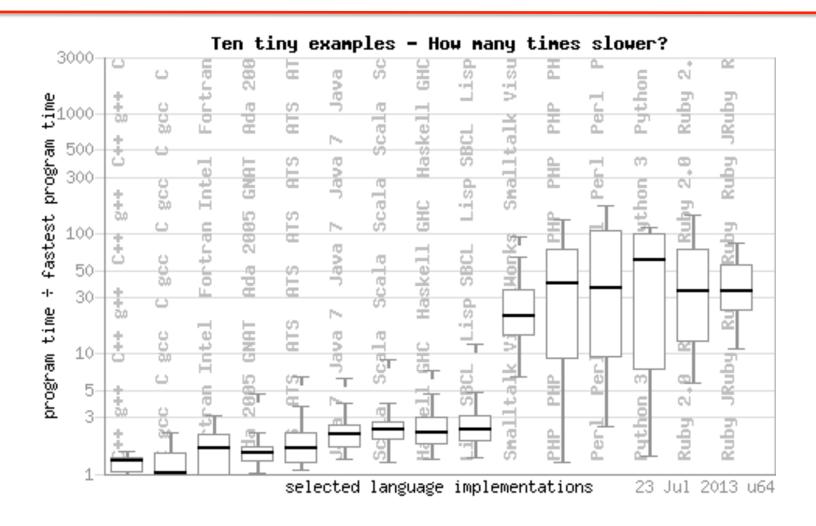
Cons

- Syntax too verbose
- Inconsistent semantics due to enforced backwards compatibility (primitive types vs. objects, equality, etc.)

Scala

Pros

- Pretty fast
- "Hot" language for NLP, ML, web development
- Clean exception handling
- Clean syntax
- Consistent semantics
- Statically typed
- At least one great IDE
- Fully compatible with Java (use all Java libraries)


Cons

- It has some "dark corners"
- Backwards compatibility not guaranteed

C/C++

- Pros
 - Fast
- Cons
 - Too many to list

Comparison

More benchmarks: http://benchmarksgame.alioth.debian.org/u64/benchmark.php?test=all&lang=all&data=u64

THINGS TO DO NOW

Project 1 due in two weeks!

